• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Comunicaciones a congresos, conferencias, etc.
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Comunicaciones a congresos, conferencias, etc.
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/75864

    Título
    Effortless and Efficient Distributed Data-Partitioning in Linear Algebra
    Autor
    de Blas Cartón, Carlos
    González Escribano, ArturoAutoridad UVA Orcid
    Llanos Ferraris, Diego RafaelAutoridad UVA Orcid
    Congreso
    12th IEEE International Conference on High Performance Computing and Communications, HPCC 2010
    Año del Documento
    2010
    Editorial
    IEEE
    Descripción Física
    9 p.
    Descripción
    Producción Científica
    Documento Fuente
    12th IEEE International Conference on High Performance Computing and Communications, HPCC 2010, 1-3 September 2010, Melbourne, Australia
    Abstract
    This paper introduces a new technique to exploit compositions of different data-layout techniques with Hitmap, a library for hierarchical-tiling and automatic mapping of arrays. We show how Hitmap is used to implement block-cyclic layouts for a parallel LU decomposition algorithm. The paper compares the well-known ScaLAPACK implementation of LU, as well as other carefully optimized MPI versions, with a Hitmap implementation. The comparison is made in terms of both performance and code length. Our results show that the Hitmap version outperforms the ScaLAPACK implementation and is almost as efficient as our best manual MPI implementation. The insertion of this composition technique in the automatic data-layouts of Hitmap allows the programmer to develop parallel programs with both a significant reduction of the development effort and a negligible loss of efficiency.
    Materias (normalizadas)
    Informática
    Materias Unesco
    1203 Ciencia de Los Ordenadores
    3304 Tecnología de Los Ordenadores
    Palabras Clave
    Automatic data partition; layouts; distributed systems.
    ISBN
    978-1-4244-8335-8
    DOI
    10.1109/HPCC.2010.37
    Patrocinador
    This research is partly supported by the Ministerio de Educación y Ciencia, Spain (TIN2007-62302), Ministerio de Industria, Spain (FIT-350101-2007-27, FIT-350101-2006-46, TSI-020302-2008-89, CENIT MARTA, CENIT OASIS,CENIT OCEAN LEADER), Junta de Castilla y León, Spain (VA094A08), and also by the Dutch government STW/PROGRESS project DES.6397. Part of this work was carried out under the HPC-EUROPA project (RII3-CT-2003-506079), with the support of the European Community -Research Infrastructure Action under the FP6 “Structuring the European Research Area” Programme.
    Version del Editor
    https://ieeexplore.ieee.org/document/5581332
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/75864
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP41 - Comunicaciones a congresos, conferencias, etc. [101]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    Effortless_and_Efficient_Distributed_Data-Partitioning_in_Linear_Algebra.pdf
    Tamaño:
    706.3Kb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10