• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Institutos de Investigación
    • Instituto Universitario de Investigación en Gestión Forestal Sostenible
    • IUGFS - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Institutos de Investigación
    • Instituto Universitario de Investigación en Gestión Forestal Sostenible
    • IUGFS - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/75936

    Título
    Combining hand-held and drone-based lidar for forest carbon monitoring: insights from a Mediterranean mixed forest in central Portugal
    Autor
    Tupinambá Simões, Frederico
    Pascual, Adrián
    Guerra Hernández, Juan
    Ordoñez Alonso, Ángel CristobalAutoridad UVA Orcid
    Barreiro, Susana
    Bravo Oviedo, FelipeAutoridad UVA Orcid
    Año del Documento
    2025
    Editorial
    Springer
    Descripción
    Producción Científica
    Documento Fuente
    European Journal of Forest Research, 2025.
    Résumé
    The adoption of novel methods in forest management planning requires the incorporation of precise forest and tree data to improve scheduling and meet multi-objective criteria principles. This study evaluates advanced methods for mapping tree structural attributes to create detailed baselines for forest carbon biomass, a key indicator in environmental policies. We specifically investigate the combined use of mobile sensors (hand-held laser scanning, HLS) and airborne (unmanned laser scanning, ULS), to estimate biomass and carbon stocks in a Mediterranean mixed forest. The novelty of our study lies in the synergistic application of HLS and ULS technologies and the evaluation of different ULS flight altitudes (50, 70, 90, 110 m) and scanning modes to optimize data accuracy and coverage. The main questions addressed are: (1) How do different flight altitudes and scanning modes of ULS affect the accuracy of biomass and carbon stock estimations? (2) What is the impact of merging HLS and ULS data on the precision of tree structural attribute measurements? (3) Can the combined use of HLS and ULS overcome the limitations of individual systems, particularly in complex forest structures? Our case study is conducted in a 1-ha plot in a complex, terraced forest region in Central Portugal, chosen for its high species diversity and structural complexity, which present significant challenges for remote sensing technologies. This site represents a typical Mediter- ranean mixed forest, allowing us to test methods in conditions that are both typical and challenging for forest monitoring. The distribution of HLS estimates was aligned with reference DBH measurement, though systematically lower (~ 2–3 cm bias). The impact of these measurement errors on total biomass estimation was around 13%. In contrast, major discrepancies were observed in tree height estimations when comparing HLS, ULS, fused ULS-HLS point clouds, with field reference data. ULS operated effectively at heights up to 110 m, increasing coverage without compromising result quality. However, merging point cloud datasets did not significantly improve the accuracy of tree height estimates due to the complexity and high species mingling of the forest stand. We recommend caution in using field measurements for validating tree height estimates with laser sensors under these conditions.
    Materias Unesco
    31 Ciencias Agrarias
    Palabras Clave
    Precision forestry
    Forest monitoring
    Mobile laser scanning
    Forest inventory
    ISSN
    1612-4669
    Revisión por pares
    SI
    DOI
    10.1007/s10342-025-01772-7
    Patrocinador
    Open access funding provided by FEDER European Funds and the Junta De Castilla y León under the Research and Innovation Strategy for Smart Specialization (RIS3) of Castilla y León 2021-2027.
    European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no.956355
    European Union’s Horizon 2020 research and innovation programme under the CARE4C, n.º 778322
    Ministerio de Ciencia e Innovación de España (proyecto IMFLEX PID2021–126275OB-C22)
    Version del Editor
    https://link.springer.com/article/10.1007/s10342-025-01772-7
    Propietario de los Derechos
    © 2025 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/75936
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • IUGFS - Artículos de revista [145]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Combining-hand‑held-drone‑based-lidar-forest-carbon.pdf
    Tamaño:
    4.535Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Atribución 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10