Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/75941
Título
Improving the computational performance of TCLUST through ensemble initialization
Autor
Año del Documento
2025
Editorial
Springer
Descripción
Producción Científica
Documento Fuente
Advances in Data Analysis and Classification, 2025.
Resumo
Outliers are known to be detrimental to widely used clustering techniques. Robust clus-
tering alternatives have been introduced to better resist outlying observations. Among
these, robust clustering methods based on trimming have proven effective by allowing
the removal of a fraction of observations where outliers are likely to be found, with
TCLUST being one of the most popular for handling elliptically contoured clusters.
The algorithm for applying TCLUST can be seen as an extension of the concentra-
tion steps used in the fast-MCD algorithm for computing the Minimum Covariance
Determinant. However, obtaining good initializations for these concentration steps in
TCLUST is more complex than in MCD. This initialization task is particularly chal-
lenging unless both the number of clusters and the dimensionality are small. To address
this, a new ensemble initialization procedure for TCLUST will be presented, which
takes advantage of partially correct information from all iterated random initializa-
tions rather than focusing solely on the best individual one found. Initial experiments
suggest that this methodology could improve the computational performance of the
standard TCLUST algorithm.
Materias Unesco
12 Matemáticas
Palabras Clave
Cluster analysis
Robustness
Trimming
Model-based clustering
ISSN
1862-5347
Revisión por pares
SI
Patrocinador
Open access funding provided by FEDER European Funds and the Junta De Castilla y León under the Research and Innovation Strategy for Smart Specialization (RIS3) of Castilla y León 2021-2027.
Ministerio de Ciencia e Innovación (MCIN/AEI/10.13039/501100011033/FEDER) - grant PID2021-128314NB-I00
Junta de Castilla y León (VA064G24)
Ministerio de Ciencia e Innovación (MCIN/AEI/10.13039/501100011033/FEDER) - grant PID2021-128314NB-I00
Junta de Castilla y León (VA064G24)
Version del Editor
Propietario de los Derechos
© 2025 The Author(s)
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item
