• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Pediatría e Inmunología, Obstetricia y Ginecología, Nutrición y Bromatología, Psiquiatría e Historia de la Ciencia
    • DEP55 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Pediatría e Inmunología, Obstetricia y Ginecología, Nutrición y Bromatología, Psiquiatría e Historia de la Ciencia
    • DEP55 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/75949

    Título
    Preliminary analysis of AI-based thyroid nodule evaluation in a non-subspecialist endocrinology setting
    Autor
    Fernández Velasco, Pablo
    Estévez Asensio, Lucía
    Torres Torres, BeatrizAutoridad UVA
    Ortolá Buigues, AnaAutoridad UVA
    Gómez Hoyos, EmiliaAutoridad UVA
    Delgado García, EstherAutoridad UVA
    Luis Román, Daniel Antonio deAutoridad UVA Orcid
    Díaz Soto, GonzaloAutoridad UVA
    Año del Documento
    2025
    Editorial
    Springer
    Descripción
    Producción Científica
    Documento Fuente
    Endocrine, 2025.
    Résumé
    Purpose Thyroid nodules are commonly evaluated using ultrasound-based risk stratification systems, which rely on sub- jective descriptors. Artificial intelligence (AI) may improve assessment, but its effectiveness in non-subspecialist settings is unclear. This study evaluated the impact of an AI-based decision support system (AI-DSS) on thyroid nodule ultrasound assessments by general endocrinologists (GE) without subspecialty thyroid imaging training. Methods A prospective cohort study was conducted on 80 patients undergoing thyroid ultrasound in GE outpatient clinics. Thyroid ultrasound was performed based on clinical judgment as part of routine care by GE. Images were retrospectively analyzed using an AI-DSS (Koios DS), independently of clinician assessments. AI-DSS results were compared with initial GE evaluations and, when referred, with expert evaluations at a subspecialized thyroid nodule clinic (TNC). Agreement in ultrasound features, risk classification by the American College of Radiology Thyroid Imaging Reporting and Data System (ACR TI-RADS) and American Thyroid Association guidelines, and referral recommendations was assessed. Results AI-DSS differed notably from GE, particularly assessing nodule composition (solid: 80%vs.36%,p < 0.01), echo- genicity (hypoechoic:52%vs.16%,p < 0.01), and echogenic foci (microcalcifications:10.7%vs.1.3%,p < 0.05). AI-DSS classification led to a higher referral rate compared to GE (37.3%vs.30.7%, not statistically significant). Agreement between AI-DSS and GE in ACR TI-RADS scoring was moderate (r = 0.337;p < 0.001), but improved when comparing GE to AI-DSS and TNC subspecialist (r = 0.465;p < 0.05 and r = 0.607;p < 0.05, respectively). Conclusion In a non-subspecialist setting, non-adjunct AI-DSS use did not significantly improve risk stratification or reduce hypothetical referrals. The system tended to overestimate risk, potentially leading to unnecessary procedures. Further optimization is required for AI to function effectively in low-prevalence environment.
    Materias Unesco
    32 Ciencias Médicas
    Palabras Clave
    Thyroid nodule
    Artificial intelligence
    AI-DSS
    Ultrasound
    ACR TI-RADS
    ATA guidelines
    Risk stratification
    General endocrinology
    Revisión por pares
    SI
    DOI
    10.1007/s12020-025-04287-8
    Patrocinador
    Open access funding provided by FEDER European Funds and the Junta De Castilla y León under the Research and Innovation Strategy for Smart Specialization (RIS3) of Castilla y León 2021-2027.
    Version del Editor
    https://link.springer.com/article/10.1007/s12020-025-04287-8
    Propietario de los Derechos
    © 2025 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/75949
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP55 - Artículos de revista [208]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Preliminary-analysis-AI-based-thyroid.pdf
    Tamaño:
    750.6Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Atribución 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10