• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Ingeniería Energética y Fluidomecánica
    • DEP46 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Ingeniería Energética y Fluidomecánica
    • DEP46 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/75997

    Título
    A 4E analysis of different Fuel Cell mCHP configurations operating with different strategies in residential applications
    Autor
    Gabana Molina, PedroAutoridad UVA Orcid
    Reyes Serrano, MiriamAutoridad UVA Orcid
    Tinaut Fluixá, Francisco VicenteAutoridad UVA Orcid
    Novella, Ricardo
    Año del Documento
    2025
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    International Journal of Hydrogen Energy, 2025
    Résumé
    This study explores the viability, assessed in terms of primary energy, exergy, CO2 emissions, and economic benefits (4 E), associated with the integration of small-scale cogeneration systems (mCHP) utilizing proton ex- change membrane fuel cells (PEMFC). The investigation is specifically oriented towards the residential sector. The model uses annual electrical and thermal demands as inputs. Parametric studies conducted through the modification of these values have been carried out. Dynamic demands are modelled using fixed consumption profiles to distribute the total annual demands. Five configurations of CHP systems based on fuel cell technology (FC-mCHP) are analysed in this work. In the first configuration FC-mCHP uses hydrogen produced by an on-site steam methane reformer. In the second configuration FC-mCHP is fed with hydrogen coming from a centralized steam methane reformer. The third configuration is similar to the second configuration but with CO2 capture in the hydrogen generator. In the fourth configuration the FC-mCHP is supplied with hydrogen produced by an on-site electrolyser. In the fifth configuration the FC-mCHP utilizes hydrogen supplied from a centralized electrolyser. Each of these five con- figurations can be combined with a heat pump system, making a total of ten options. In the FC-mCHP model, the electrical and thermal outputs are linked with the load of the system. The FC- mCHP load is set according to three operational strategies within each configuration: fulfil electricity demand, fulfil thermal demand, and fulfil both demands simultaneously. The FC-mCHP maximum electrical power serves as the sizing parameter. Additionally, the potential addition of a heat pump-based system is explored to increase thermal energy production. A conventional scenario is taken as a reference, in which electrical energy is taken from the grid, and thermal energy is supplied by a natural gas boiler. The results show that there can be primary energy savings (between 20 and 60%) as well as CO2 emissions savings, with values depending on each configuration (up to 50% for the worst ones and up to 400% for the best ones) and the average operating conditions throughout the year. However, in general, all configurations lead to economic losses, compared with the reference conventional configuration. The results also indicate that the most effective strategy involves the FC-mCHP trying to satisfy both thermal and electrical demands. When the resi- dential application is not connected to electric grid, the inclusion of a heat pump to the FC-mCHP yields relevant advantages, since additional thermal power can be generated in the heat pump, by converting part of electric power
    Materias Unesco
    33 Ciencias Tecnológicas
    Palabras Clave
    Fuel cell
    Micro combined heat and power
    Heat pump
    Residential applications
    Dynamic simulation
    4E analysis
    ISSN
    0360-3199
    Revisión por pares
    SI
    DOI
    10.1016/j.ijhydene.2025.02.377
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0360319925009619
    Propietario de los Derechos
    © 2025 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/75997
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP46 - Artículos de revista [101]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    A-4E-analysis-different-Fuel-Cell-mCHP.pdf
    Tamaño:
    9.062Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Atribución-NoComercial 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución-NoComercial 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10