dc.contributor.author | Elia, Cinzia | |
dc.contributor.author | Fabbri, Roberta | |
dc.contributor.author | Núñez Jiménez, María del Carmen | |
dc.date.accessioned | 2025-06-19T07:55:44Z | |
dc.date.available | 2025-06-19T07:55:44Z | |
dc.date.issued | 2025 | |
dc.identifier.citation | Journal of Differential Equations, 2025, vol. 435, p.113315 | es |
dc.identifier.issn | 0022-0396 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/76030 | |
dc.description | Producción Científica | es |
dc.description.abstract | Nonautonomous bifurcation theory is a growing branch of mathematics, for the insight it provides into
radical changes in the global dynamics of realistic models for many real-world phenomena, i.e., into the oc-
currence of critical transitions. This paper describes several global bifurcation diagrams for nonautonomous
first order scalar ordinary differential equations generated by coercive third degree polynomials in the state
variable. The conclusions are applied to a population dynamics model subject to an Allee effect that is weak
in the absence of migration and becomes strong under a migratory phenomenon whose sense and intensity
depend on a threshold in the number of individuals in the population. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.classification | Nonautonomous dynamical systems | es |
dc.subject.classification | Nonautonomous bifurcation theory | es |
dc.subject.classification | Critical transitions | es |
dc.subject.classification | Population models | es |
dc.title | Global bifurcation diagrams for coercive third-degree polynomial ordinary differential equations with recurrent nonautonomous coefficients | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2025 The Author(s) | es |
dc.identifier.doi | 10.1016/j.jde.2025.113315 | es |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S0022039625003420 | es |
dc.identifier.publicationfirstpage | 113315 | es |
dc.identifier.publicationtitle | Journal of Differential Equations | es |
dc.identifier.publicationvolume | 435 | es |
dc.peerreviewed | SI | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 12 Matemáticas | es |