Mostrar el registro sencillo del ítem

dc.contributor.authorFerens Michalek, Mieszko Jan
dc.contributor.authorHortelano Haro, Diego 
dc.contributor.authorMiguel Jiménez, Ignacio de 
dc.contributor.authorDurán Barroso, Ramón José 
dc.contributor.authorKosta, Sokol
dc.date.accessioned2025-06-30T09:46:43Z
dc.date.available2025-06-30T09:46:43Z
dc.date.issued2024
dc.identifier.citation15th International Conference on Network of the Future (NoF), Castelldefels, Spain, 2024, pp. 133-141es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/76157
dc.descriptionProducción Científicaes
dc.description.abstractLarge scale deployment of Internet-of-Things (IoT) devices is projected to grow in the coming years. These devices are expected to be low-cost while supporting applications with growing computational demands. To enable the necessary computations, offloading of computational tasks to Edge and Cloud nodes is a fundamental technology. However, orchestration for such networks is a complex problem which affects both the network design and the decision system. To aid in solving this problem, simulation tools are essential for predicting the performance of networks in different conditions and under different orchestration policies. In this paper, we propose STEROCEN, a Cloud-Edge network resource orchestration simulation and training tool which allows for different configurations of up-to a four-layer network composed of: (i) end-device, (ii) Close Edge, (iii) Far Edge, and (iv) Cloud layers. Our tool collects delay metrics for flexibly defined applications, especially in regard to computation in the network nodes and including uncertainty in processing times. Additionally, the tool only needs the initial configuration and an independently defined orchestrator, allowing for testing of many strategies. As an example, we provide results of testing some Deep Reinforcement Learning (DRL) algorithms using the same training and simulation environment.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherIEEEes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationSimulatores
dc.subject.classificationOrchestrationes
dc.subject.classificationEdge-Cloud Computinges
dc.subject.classificationComputation Offloadinges
dc.subject.classificationReinforcement Learninges
dc.subject.classificationIoTes
dc.titleSTEROCEN: Simulation and Training Environment for Resource Orchestration in Cloud-Edge Networkses
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.identifier.doi10.1109/NoF62948.2024.10741443es
dc.relation.publisherversionhttps://ieeexplore.ieee.org/abstract/document/10741443es
dc.title.event2024 15th International Conference on Network of the Future (NoF)es
dc.description.projectEU H2020 MSCA ITN-ETN IoTalentum (grant no. 953442)es
dc.description.projectMinisterio de Ciencia e Innovación y Agencia Estatal de Investigación (Proyecto PID2020-112675RB-C42 financiado por MCIN/AEI/10.13039/501100011033)es
dc.description.projectConsejería de Educación de la Junta de Castilla y León y FEDER (VA231P20)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem