Show simple item record

dc.contributor.authorBecattini, Marco
dc.contributor.authorCarnevali, Laura
dc.contributor.authorFontani, Giovanni
dc.contributor.authorParoli, Leonardo
dc.contributor.authorScommegna, Leonardo
dc.contributor.authorMasoumi Estahbanati, Maryam 
dc.contributor.authorMiguel Jiménez, Ignacio de 
dc.contributor.authorBrasca, Fabrizio
dc.date.accessioned2025-06-30T11:06:37Z
dc.date.available2025-06-30T11:06:37Z
dc.date.issued2024
dc.identifier.citation2024 IEEE International Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0 and IoT), Firenze, Italy, 2024, pp. 372-376es
dc.identifier.isbn979-8-3503-8582-3es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/76162
dc.descriptionProducción Científicaes
dc.description.abstractThe use of innovative technologies in Industry X.0 sce narios, including, but not limited to, Augmented Reality/Virtual Reality (AR/VR), autonomous robotics, and advanced security systems, requires applicative interconnections between a large number of IoT machines and devices. These interconnections must support Ultra-Reliable and Low Latency Communications (URLLC) to optimize usage and per formances of devices related to those new technologies. Notably, the concepts of low latency and reliability are inherently linked; from a device perspective, any service exceeding specific response time thresholds is deemed unresponsive, and thus unreliable. In this paper, we present an innovative approach to quan titatively evaluate reliability in URLLC settings, leveraging the use of Digital Twin Networks (DTN), with a specific focus on Mobile Edge Computing (MEC) and its application to Industry X.0 scenarios. Results obtained so far show the potential for this approach to confer MEC better requests handling capabilities, by providing a near real time re-configuration ability within the MEC itself.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherIEEEes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationIndustry X.0es
dc.subject.classificationUltra-Reliable and Low Latency Communications (URLLC)es
dc.subject.classificationDigital Twin Networks (DTN)es
dc.subject.classificationMobile Edge Computing (MEC)es
dc.subject.classificationStochastic modeling and analysises
dc.titleDynamic MEC resource management for URLLC in Industry X.0 scenarios: a quantitative approach based on digital twin networkses
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.identifier.doi10.1109/MetroInd4.0IoT61288.2024.10584165es
dc.relation.publisherversionhttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10584165es
dc.title.event2024 IEEE International Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0 and IoT)es
dc.description.projectItalian NRRP NextGenerationEU (PE0000001 - program “RESTART”)es
dc.description.projectEU H2020 MSCA ITN-ETN IoTalentum (grant no. 953442)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record