dc.contributor.author | Becattini, Marco | |
dc.contributor.author | Carnevali, Laura | |
dc.contributor.author | Fontani, Giovanni | |
dc.contributor.author | Paroli, Leonardo | |
dc.contributor.author | Scommegna, Leonardo | |
dc.contributor.author | Masoumi Estahbanati, Maryam | |
dc.contributor.author | Miguel Jiménez, Ignacio de | |
dc.contributor.author | Brasca, Fabrizio | |
dc.date.accessioned | 2025-06-30T11:06:37Z | |
dc.date.available | 2025-06-30T11:06:37Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | 2024 IEEE International Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0 and IoT), Firenze, Italy, 2024, pp. 372-376 | es |
dc.identifier.isbn | 979-8-3503-8582-3 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/76162 | |
dc.description | Producción Científica | es |
dc.description.abstract | The use of innovative technologies in Industry X.0 sce
narios, including, but not limited to, Augmented Reality/Virtual
Reality (AR/VR), autonomous robotics, and advanced security
systems, requires applicative interconnections between a large
number of IoT machines and devices.
These interconnections must support Ultra-Reliable and Low
Latency Communications (URLLC) to optimize usage and per
formances of devices related to those new technologies. Notably,
the concepts of low latency and reliability are inherently linked;
from a device perspective, any service exceeding specific response
time thresholds is deemed unresponsive, and thus unreliable.
In this paper, we present an innovative approach to quan
titatively evaluate reliability in URLLC settings, leveraging the
use of Digital Twin Networks (DTN), with a specific focus on
Mobile Edge Computing (MEC) and its application to Industry
X.0 scenarios.
Results obtained so far show the potential for this approach to
confer MEC better requests handling capabilities, by providing
a near real time re-configuration ability within the MEC itself. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | IEEE | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.classification | Industry X.0 | es |
dc.subject.classification | Ultra-Reliable and Low Latency Communications (URLLC) | es |
dc.subject.classification | Digital Twin Networks (DTN) | es |
dc.subject.classification | Mobile Edge Computing (MEC) | es |
dc.subject.classification | Stochastic modeling and analysis | es |
dc.title | Dynamic MEC resource management for URLLC in Industry X.0 scenarios: a quantitative approach based on digital twin networks | es |
dc.type | info:eu-repo/semantics/conferenceObject | es |
dc.identifier.doi | 10.1109/MetroInd4.0IoT61288.2024.10584165 | es |
dc.relation.publisherversion | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10584165 | es |
dc.title.event | 2024 IEEE International Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0 and IoT) | es |
dc.description.project | Italian NRRP NextGenerationEU (PE0000001 - program “RESTART”) | es |
dc.description.project | EU H2020 MSCA ITN-ETN IoTalentum (grant no. 953442) | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es |