• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Comunicaciones a congresos, conferencias, etc.
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Comunicaciones a congresos, conferencias, etc.
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/76162

    Título
    Dynamic MEC resource management for URLLC in Industry X.0 scenarios: a quantitative approach based on digital twin networks
    Autor
    Becattini, Marco
    Carnevali, Laura
    Fontani, Giovanni
    Paroli, Leonardo
    Scommegna, Leonardo
    Masoumi Estahbanati, MaryamAutoridad UVA Orcid
    Miguel Jiménez, Ignacio deAutoridad UVA Orcid
    Brasca, Fabrizio
    Congreso
    2024 IEEE International Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0 and IoT)
    Año del Documento
    2024
    Editorial
    IEEE
    Descripción
    Producción Científica
    Documento Fuente
    2024 IEEE International Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0 and IoT), Firenze, Italy, 2024, pp. 372-376
    Abstract
    The use of innovative technologies in Industry X.0 sce narios, including, but not limited to, Augmented Reality/Virtual Reality (AR/VR), autonomous robotics, and advanced security systems, requires applicative interconnections between a large number of IoT machines and devices. These interconnections must support Ultra-Reliable and Low Latency Communications (URLLC) to optimize usage and per formances of devices related to those new technologies. Notably, the concepts of low latency and reliability are inherently linked; from a device perspective, any service exceeding specific response time thresholds is deemed unresponsive, and thus unreliable. In this paper, we present an innovative approach to quan titatively evaluate reliability in URLLC settings, leveraging the use of Digital Twin Networks (DTN), with a specific focus on Mobile Edge Computing (MEC) and its application to Industry X.0 scenarios. Results obtained so far show the potential for this approach to confer MEC better requests handling capabilities, by providing a near real time re-configuration ability within the MEC itself.
    Palabras Clave
    Industry X.0
    Ultra-Reliable and Low Latency Communications (URLLC)
    Digital Twin Networks (DTN)
    Mobile Edge Computing (MEC)
    Stochastic modeling and analysis
    ISBN
    979-8-3503-8582-3
    DOI
    10.1109/MetroInd4.0IoT61288.2024.10584165
    Patrocinador
    Italian NRRP NextGenerationEU (PE0000001 - program “RESTART”)
    EU H2020 MSCA ITN-ETN IoTalentum (grant no. 953442)
    Version del Editor
    https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10584165
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/76162
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Comunicaciones a congresos, conferencias, etc. [129]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    MetroInd_2024_Becattini_el_al.pdf
    Tamaño:
    158.2Kb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10