Mostrar el registro sencillo del ítem

dc.contributor.authorChung, Won Sang
dc.contributor.authorZare, Soroush
dc.contributor.authorHassanabadi, Hassan
dc.contributor.authorNieto Calzada, Luis Miguel 
dc.date.accessioned2025-07-08T07:58:05Z
dc.date.available2025-07-08T07:58:05Z
dc.date.issued2025
dc.identifier.citationMathematical Methods in the Applied Sciences, 2025es
dc.identifier.issn0170-4214es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/76286
dc.descriptionProducción Científicaes
dc.description.abstractIn this work, we explore both the ordinary (Formula presented.) -Gaussian distribution and a new one defined here, determining both their mean and variance, and we use them to construct solutions of the (Formula presented.) -deformed diffusion differential equation. This approach allows us to realize that the standard deviation of the distribution must be a function of time. In one case, we derive a linear Fokker-Planck equation within a finite region, revealing a new form of both the position- and time-dependent diffusion coefficient and the corresponding continuity equation. It is noteworthy that, in both cases, the conventional result is obtained when (Formula presented.) tends to zero. Furthermore, we derive the deformed diffusion-decay equation in a finite region, also determining the position- and time-dependent decay coefficient. A discrete version of this diffusion-decay equation is addressed, in which the discrete times have a uniform interval, while for the discrete positions, the interval is not uniform.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherWiley-Intersciencees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectDiffusion equationes
dc.subjectq-Gaussian distributionses
dc.subject.classificationDiffusion-decay equationes
dc.subject.classificationDiffusion equationes
dc.subject.classificationFokker-Planck equationes
dc.subject.classificationq-Gaussian distributionses
dc.titleTwo Types of q‐Gaussian Distributions Used to Study the Diffusion in a Finite Regiones
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2025 The Author(s)es
dc.identifier.doi10.1002/mma.11094es
dc.relation.publisherversionhttps://onlinelibrary.wiley.com/doi/10.1002/mma.11094es
dc.identifier.publicationtitleMathematical Methods in the Applied Scienceses
dc.peerreviewedSIes
dc.description.projectEste trabajo forma parte del proyecto de investigación: Consejería de Educación, Junta de Castilla y León (Grant number(s): PRTRC17.11, CLU-2023-1-05; Ministerio de Ciencia, Innovación y Universidades (Grant number(s): PID2023-148409NB-I00, RED2022-134301-T, PRTRC17.11; European Commission (Grant number(s): PRTRC17.11.es
dc.identifier.essn1099-1476es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem