• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Física Teórica, Atómica y Óptica
    • DEP33 - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Física Teórica, Atómica y Óptica
    • DEP33 - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/76286

    Título
    Two Types of q‐Gaussian Distributions Used to Study the Diffusion in a Finite Region
    Autor
    Chung, Won Sang
    Zare, Soroush
    Hassanabadi, Hassan
    Nieto Calzada, Luis MiguelAutoridad UVA Orcid
    Año del Documento
    2025
    Editorial
    Wiley-Interscience
    Descripción
    Producción Científica
    Documento Fuente
    Mathematical Methods in the Applied Sciences, 2025
    Abstract
    In this work, we explore both the ordinary (Formula presented.) -Gaussian distribution and a new one defined here, determining both their mean and variance, and we use them to construct solutions of the (Formula presented.) -deformed diffusion differential equation. This approach allows us to realize that the standard deviation of the distribution must be a function of time. In one case, we derive a linear Fokker-Planck equation within a finite region, revealing a new form of both the position- and time-dependent diffusion coefficient and the corresponding continuity equation. It is noteworthy that, in both cases, the conventional result is obtained when (Formula presented.) tends to zero. Furthermore, we derive the deformed diffusion-decay equation in a finite region, also determining the position- and time-dependent decay coefficient. A discrete version of this diffusion-decay equation is addressed, in which the discrete times have a uniform interval, while for the discrete positions, the interval is not uniform.
    Materias (normalizadas)
    Diffusion equation
    q-Gaussian distributions
    Palabras Clave
    Diffusion-decay equation
    Diffusion equation
    Fokker-Planck equation
    q-Gaussian distributions
    ISSN
    0170-4214
    Revisión por pares
    SI
    DOI
    10.1002/mma.11094
    Patrocinador
    Este trabajo forma parte del proyecto de investigación: Consejería de Educación, Junta de Castilla y León (Grant number(s): PRTRC17.11, CLU-2023-1-05; Ministerio de Ciencia, Innovación y Universidades (Grant number(s): PID2023-148409NB-I00, RED2022-134301-T, PRTRC17.11; European Commission (Grant number(s): PRTRC17.11.
    Version del Editor
    https://onlinelibrary.wiley.com/doi/10.1002/mma.11094
    Propietario de los Derechos
    © 2025 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/76286
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP33 - Artículos de revista [203]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    Two Types of q‐Gaussian Distributions Used to Study the Diffusion in a.pdf
    Tamaño:
    1.339Mb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri
    Atribución 4.0 InternacionalLa licencia del ítem se describe como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10