Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/76286
Título
Two Types of q‐Gaussian Distributions Used to Study the Diffusion in a Finite Region
Año del Documento
2025
Editorial
Wiley-Interscience
Descripción
Producción Científica
Documento Fuente
Mathematical Methods in the Applied Sciences, 2025
Abstract
In this work, we explore both the ordinary (Formula presented.) -Gaussian distribution and a new one defined here, determining both their mean and variance, and we use them to construct solutions of the (Formula presented.) -deformed diffusion differential equation. This approach allows us to realize that the standard deviation of the distribution must be a function of time. In one case, we derive a linear Fokker-Planck equation within a finite region, revealing a new form of both the position- and time-dependent diffusion coefficient and the corresponding continuity equation. It is noteworthy that, in both cases, the conventional result is obtained when (Formula presented.) tends to zero. Furthermore, we derive the deformed diffusion-decay equation in a finite region, also determining the position- and time-dependent decay coefficient. A discrete version of this diffusion-decay equation is addressed, in which the discrete times have a uniform interval, while for the discrete positions, the interval is not uniform.
Materias (normalizadas)
Diffusion equation
q-Gaussian distributions
Palabras Clave
Diffusion-decay equation
Diffusion equation
Fokker-Planck equation
q-Gaussian distributions
ISSN
0170-4214
Revisión por pares
SI
Patrocinador
Este trabajo forma parte del proyecto de investigación: Consejería de Educación, Junta de Castilla y León (Grant number(s): PRTRC17.11, CLU-2023-1-05; Ministerio de Ciencia, Innovación y Universidades (Grant number(s): PID2023-148409NB-I00, RED2022-134301-T, PRTRC17.11; European Commission (Grant number(s): PRTRC17.11.
Version del Editor
Propietario de los Derechos
© 2025 The Author(s)
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Files in questo item
Tamaño:
1.339Mb
Formato:
Adobe PDF
