dc.contributor.author | Anzola Rojas, Camilo | |
dc.contributor.author | Durán Barroso, Ramón José | |
dc.contributor.author | Miguel Jiménez, Ignacio de | |
dc.contributor.author | Aguado Manzano, Juan Carlos | |
dc.contributor.author | Merayo Álvarez, Noemí | |
dc.contributor.author | Fernández Reguero, Patricia | |
dc.contributor.author | Lorenzo Toledo, Rubén Mateo | |
dc.contributor.author | Abril Domingo, Evaristo José | |
dc.date.accessioned | 2025-07-09T09:14:18Z | |
dc.date.available | 2025-07-09T09:14:18Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | 2023 IEEE Latin-American Conference on Communications (LATINCOM). Panama City, Panama: IEEE Institute of Electrical and Electronics Engineers, 15-17 November 2023, p. 1-5 | es |
dc.identifier.isbn | 9798350326871 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/76301 | |
dc.description | Producción Científica | es |
dc.description.abstract | Multi-Access Edge Computing (MEC) network planning is performed considering a forecast of estimated workload in each coverage zone with the aim of offloading computationally expensive tasks from user's devices to the nearest MEC Data Center (MEC-DC). Nevertheless, in some scenarios, these forecasts are exceeded temporarily due to sudden peaks in demand in a determined MEC-DC, making its planned computing resources (i.e., MEC servers) scarce, and introducing the need of a strategy to face this increment in demand. In this paper, we propose and evaluate an Integer Linear Programming (ILP) model for optimizing the task offloading considering a previously defined MEC network topology. Our model is based on the possibility of offloading some tasks to MEC-DCs different to the initially planned (nearest to the user) one, as long as the latency requirements are met, and the allocated server has enough idle computing power. Results show that the proposed strategy considerably increases the capacity of the network to face sudden workload increments compared to an approach that only assigns the nearest MEC server to every user. | es |
dc.format.extent | 5 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | IEEE Institute of Electrical and Electronics Engineers | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Computer software | es |
dc.subject | MEC Networks | es |
dc.subject.classification | Resource allocation | es |
dc.subject.classification | Computation offloading | es |
dc.subject.classification | Multi Access Edge Computing MEC | es |
dc.subject.classification | Resource optimization | es |
dc.subject.classification | Network operation | es |
dc.title | Distributed Task Offloading in MEC Networks for Temporary Peaks in Demand | es |
dc.type | info:eu-repo/semantics/conferenceObject | es |
dc.rights.holder | © 2024 The Authors | es |
dc.identifier.doi | 10.1109/LATINCOM59467.2023.10361901 | es |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/10361901 | es |
dc.title.event | 2023 IEEE Latin-American Conference on Communications (LATINCOM) | es |
dc.description.project | Este trabajo forma parte del proyecto de investigación: Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación (Proyecto PID2020-112675RB-C42 financiado por MCIN/AEI/10.13039/501100011033); Consejería de Educación de la Junta de Castilla y León y FEDER (VA231P20); EU H2020 MSCA ITN-ETN IoTalentum (grant no. 953442) | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es |