Show simple item record

dc.contributor.authorAnzola Rojas, Camilo 
dc.contributor.authorDurán Barroso, Ramón José 
dc.contributor.authorMiguel Jiménez, Ignacio de 
dc.contributor.authorAguado Manzano, Juan Carlos 
dc.contributor.authorMerayo Álvarez, Noemí 
dc.contributor.authorFernández Reguero, Patricia 
dc.contributor.authorLorenzo Toledo, Rubén Mateo 
dc.contributor.authorAbril Domingo, Evaristo José 
dc.date.accessioned2025-07-09T09:14:18Z
dc.date.available2025-07-09T09:14:18Z
dc.date.issued2023
dc.identifier.citation2023 IEEE Latin-American Conference on Communications (LATINCOM). Panama City, Panama: IEEE Institute of Electrical and Electronics Engineers, 15-17 November 2023, p. 1-5es
dc.identifier.isbn9798350326871es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/76301
dc.descriptionProducción Científicaes
dc.description.abstractMulti-Access Edge Computing (MEC) network planning is performed considering a forecast of estimated workload in each coverage zone with the aim of offloading computationally expensive tasks from user's devices to the nearest MEC Data Center (MEC-DC). Nevertheless, in some scenarios, these forecasts are exceeded temporarily due to sudden peaks in demand in a determined MEC-DC, making its planned computing resources (i.e., MEC servers) scarce, and introducing the need of a strategy to face this increment in demand. In this paper, we propose and evaluate an Integer Linear Programming (ILP) model for optimizing the task offloading considering a previously defined MEC network topology. Our model is based on the possibility of offloading some tasks to MEC-DCs different to the initially planned (nearest to the user) one, as long as the latency requirements are met, and the allocated server has enough idle computing power. Results show that the proposed strategy considerably increases the capacity of the network to face sudden workload increments compared to an approach that only assigns the nearest MEC server to every user.es
dc.format.extent5 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherIEEE Institute of Electrical and Electronics Engineerses
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectComputer softwarees
dc.subjectMEC Networkses
dc.subject.classificationResource allocationes
dc.subject.classificationComputation offloadinges
dc.subject.classificationMulti Access Edge Computing MECes
dc.subject.classificationResource optimizationes
dc.subject.classificationNetwork operationes
dc.titleDistributed Task Offloading in MEC Networks for Temporary Peaks in Demandes
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.rights.holder© 2024 The Authorses
dc.identifier.doi10.1109/LATINCOM59467.2023.10361901es
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/10361901es
dc.title.event2023 IEEE Latin-American Conference on Communications (LATINCOM)es
dc.description.projectEste trabajo forma parte del proyecto de investigación: Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación (Proyecto PID2020-112675RB-C42 financiado por MCIN/AEI/10.13039/501100011033); Consejería de Educación de la Junta de Castilla y León y FEDER (VA231P20); EU H2020 MSCA ITN-ETN IoTalentum (grant no. 953442)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record