Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/76301
Título
Distributed Task Offloading in MEC Networks for Temporary Peaks in Demand
Autor
Congreso
2023 IEEE Latin-American Conference on Communications (LATINCOM)
Año del Documento
2023
Editorial
IEEE Institute of Electrical and Electronics Engineers
Descripción Física
5 p.
Descripción
Producción Científica
Documento Fuente
2023 IEEE Latin-American Conference on Communications (LATINCOM). Panama City, Panama: IEEE Institute of Electrical and Electronics Engineers, 15-17 November 2023, p. 1-5
Abstract
Multi-Access Edge Computing (MEC) network planning is performed considering a forecast of estimated workload in each coverage zone with the aim of offloading computationally expensive tasks from user's devices to the nearest MEC Data Center (MEC-DC). Nevertheless, in some scenarios, these forecasts are exceeded temporarily due to sudden peaks in demand in a determined MEC-DC, making its planned computing resources (i.e., MEC servers) scarce, and introducing the need of a strategy to face this increment in demand. In this paper, we propose and evaluate an Integer Linear Programming (ILP) model for optimizing the task offloading considering a previously defined MEC network topology. Our model is based on the possibility of offloading some tasks to MEC-DCs different to the initially planned (nearest to the user) one, as long as the latency requirements are met, and the allocated server has enough idle computing power. Results show that the proposed strategy considerably increases the capacity of the network to face sudden workload increments compared to an approach that only assigns the nearest MEC server to every user.
Materias (normalizadas)
Computer software
MEC Networks
Palabras Clave
Resource allocation
Computation offloading
Multi Access Edge Computing MEC
Resource optimization
Network operation
ISBN
9798350326871
Patrocinador
Este trabajo forma parte del proyecto de investigación: Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación (Proyecto PID2020-112675RB-C42 financiado por MCIN/AEI/10.13039/501100011033); Consejería de Educación de la Junta de Castilla y León y FEDER (VA231P20); EU H2020 MSCA ITN-ETN IoTalentum (grant no. 953442)
Version del Editor
Propietario de los Derechos
© 2024 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Aparece en las colecciones
Files in questo item
