Show simple item record

dc.contributor.authorPozo Velázquez, Javier del
dc.contributor.authorAguiar Pérez, Javier Manuel 
dc.contributor.authorChamorro Posada, Pedro 
dc.contributor.authorPérez Juárez, María Ángeles 
dc.contributor.authorWang, Xinheng
dc.contributor.authorCasaseca de la Higuera, Juan Pablo 
dc.contributor.authorDel-Pozo-Velázquez, Javier
dc.contributor.authorAguiar-Pérez, Javier Manuel
dc.contributor.authorChamorro-Posada, Pedro
dc.contributor.authorPérez-Juárez, María Ángeles
dc.contributor.authorCasaseca-de-la-Higuera, Pablo
dc.date.accessioned2025-07-30T08:57:55Z
dc.date.available2025-07-30T08:57:55Z
dc.date.issued2025
dc.identifier.citationDigital Signal Processing, 2025, vol. 166, p.105346es
dc.identifier.issn1051-2004es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/76981
dc.descriptionProducción Científicaes
dc.description.abstractEarly fire detection is crucial for enabling rapid response and minimizing potentially catastrophic consequences. While artificial intelligence-based approaches have been developed for this task, they often demand substantial computational resources. Moreover, detecting smoke is inherently challenging due to its irregular, heterogeneous texture—especially under adverse weather conditions such as fog or cloud shadows. This paper introduces and validates an efficient smoke detection method grounded in fractal dimension analysis. The proposed approach involves dividing images into tiles, computing the fractal dimension for each block, and analysing the resulting fractal dimension distribution patterns to identify smoke presence. To evaluate its performance, we employed publicly available surveillance images from the High Performance Wireless Research and Education Network (HPWREN). Experimental results across five different scenarios demonstrate that the method achieves an accuracy of 96.87 %, successfully distinguishing between smoke and smoke-free regions—even under visually challenging conditions. By relying on an efficient fractal dimension algorithm, the proposed method is computationally efficient, and manages to capture the intrinsic texture characteristics of smoke, remaining unaffected by environmental noise such as fog and cloud cover.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationEarly fire detectiones
dc.subject.classificationFractal dimensiones
dc.subject.classificationImage classificationes
dc.subject.classificationRemote Sensinges
dc.titleSmoke detection in images through fractal dimension-based binary classificationes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2025 The Author(s)es
dc.identifier.doi10.1016/j.dsp.2025.105346es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1051200425003689es
dc.identifier.publicationfirstpage105346es
dc.identifier.publicationtitleDigital Signal Processinges
dc.identifier.publicationvolume166es
dc.peerreviewedSIes
dc.description.projectJunta de Castilla y León, subvención VA184P24 y Fondos FEDER (Referencia: CLU-2023–1–05)es
dc.description.projectEuropean Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 101.008.297es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco33 Ciencias Tecnológicases
dc.subject.unesco1204 Geometríaes


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record