• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/76981

    Título
    Smoke detection in images through fractal dimension-based binary classification
    Autor
    Pozo Velázquez, Javier del
    Aguiar Pérez, Javier ManuelAutoridad UVA Orcid
    Chamorro Posada, PedroAutoridad UVA Orcid
    Pérez Juárez, María ÁngelesAutoridad UVA Orcid
    Wang, Xinheng
    Casaseca de la Higuera, Juan PabloAutoridad UVA Orcid
    Del-Pozo-Velázquez, Javier
    Aguiar-Pérez, Javier Manuel
    Chamorro-Posada, Pedro
    Pérez-Juárez, María Ángeles
    Casaseca-de-la-Higuera, Pablo
    Año del Documento
    2025
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Digital Signal Processing, 2025, vol. 166, p.105346
    Resumen
    Early fire detection is crucial for enabling rapid response and minimizing potentially catastrophic consequences. While artificial intelligence-based approaches have been developed for this task, they often demand substantial computational resources. Moreover, detecting smoke is inherently challenging due to its irregular, heterogeneous texture—especially under adverse weather conditions such as fog or cloud shadows. This paper introduces and validates an efficient smoke detection method grounded in fractal dimension analysis. The proposed approach involves dividing images into tiles, computing the fractal dimension for each block, and analysing the resulting fractal dimension distribution patterns to identify smoke presence. To evaluate its performance, we employed publicly available surveillance images from the High Performance Wireless Research and Education Network (HPWREN). Experimental results across five different scenarios demonstrate that the method achieves an accuracy of 96.87 %, successfully distinguishing between smoke and smoke-free regions—even under visually challenging conditions. By relying on an efficient fractal dimension algorithm, the proposed method is computationally efficient, and manages to capture the intrinsic texture characteristics of smoke, remaining unaffected by environmental noise such as fog and cloud cover.
    Materias Unesco
    33 Ciencias Tecnológicas
    1204 Geometría
    Palabras Clave
    Early fire detection
    Fractal dimension
    Image classification
    Remote Sensing
    ISSN
    1051-2004
    Revisión por pares
    SI
    DOI
    10.1016/j.dsp.2025.105346
    Patrocinador
    Junta de Castilla y León, subvención VA184P24 y Fondos FEDER (Referencia: CLU-2023–1–05)
    European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 101.008.297
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S1051200425003689
    Propietario de los Derechos
    © 2025 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/76981
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [362]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Smoke-detection-images-through-fracta.pdf
    Tamaño:
    25.33Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10