• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/76982

    Título
    Comparison of three classifiers in detection of obstruction of the lower urinary tract using recorded sounds of voiding
    Autor
    Jojoa Acosta, Mario FernandoAutoridad UVA Orcid
    Bahillo Martínez, AlfonsoAutoridad UVA Orcid
    Arjona, Laura
    Lorenzo Toledo, Rubén MateoAutoridad UVA Orcid
    Canelón, Elba
    Año del Documento
    2025
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Computers in Biology and Medicine, 2025, vol. 193, p. 110337
    Resumen
    The aim of this research is to help health care professionals to automatically detect lower urinary tract disorders using sounds of voiding recorded at home. In total 93 patients were diagnosed as obstructed or non-obstructed in a hospital using traditional flow-metering technique. After they went to their houses to collect several micturition recordings (5–13 records per patient) by themselves using their Oppo smart watch. Our proposed method is based on the use of the wavelet scalogram to represent the collected sounds as images, which contains both time and frequency information. A deep learning model, the inception v3 convolutional neural network, is used to classify these recordings of the voiding into the categories of obstructed and non-obstructed. We compared the performance of our approach with classical techniques such as Support Vector Machine (SVM) and Multilayer Perceptron (MLP) using the envelope of the superposed sounds per patient as inputs. These recordings were obtained in home environments. The ground truth was built by physicians’ labeling these sound recording. They used the gold standard uroflowmetry test, which gave them all the information to classify the patients as either obstructed or non-obstructed. The performance of the model in terms of the F1 score, accuracy, and area under the curve were 0.897, 0.891 and 0.901, respectively.
    Materias Unesco
    33 Ciencias Tecnológicas
    Palabras Clave
    Computer vision
    Deep learning
    Inception v3
    Convolutional neural network
    Scalogram
    Wavelet
    Low urinary tract symptoms
    ISSN
    0010-4825
    Revisión por pares
    SI
    DOI
    10.1016/j.compbiomed.2025.110337
    Patrocinador
    Ministerio de Ciencia e Innovación de España bajo los proyectos Aginplace (ref. PID2023-146254OB-C41) y Swalu (ref. CPP2022-010045)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0010482525006882
    Propietario de los Derechos
    © 2025 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/76982
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [362]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Comparison-three-classifiers-detection.pdf
    Tamaño:
    1.550Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución 4.0 InternacionalLa licencia del ítem se describe como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10