Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/77012
Título
Formation of hydroxy, cyano and ethynyl derivatives of C4H4 isomers in the interstellar medium
Año del Documento
2025
Editorial
Royal Society of Chemistry
Descripción
Producción Científica
Documento Fuente
Physical Chemistry Chemical Physics, 2025, vol. 27, n. 21. p. 11413-11427
Resumo
The study of cyclic hydrocarbons is of utmost relevance in current astrochemical research, as they are considered to be among the most significant reservoirs of carbon in the interstellar medium. However, while unsaturated cyclic hydrocarbons with three, five, and six carbon atoms have been widely investigated, the highly strained antiaromatic cyclobutadiene (c-C4H4) still remains uncharted. Here, we employed high-level CCSD(T)-F12/cc-pVTZ-F12//B2PLYPD3/aug-cc-pVTZ theoretical calculations to analyze whether the cyano (CN), ethynyl (CCH), and hydroxy (OH) derivatives of c-C4H4 and its structural isomers butatriene (H2CCCCH2) and vinylacetylene (H2CCHCCH) can readily form via the gas-phase reaction: C4H4 + X → C4H3X + H (where X = CN, CCH, and OH). For each system, we thoroughly explored the corresponding potential energy surfaces, identifying their critical points to enable a detailed analysis of the thermochemistry. Hence, we found various exothermic pathways for the formation of CN and CCH derivatives of butatriene and vinylacetylene, with no net activation barriers, while the formation of the OH derivatives is in general less favorable. Prior to the mechanistic study, we also analyzed the complete conformational panorama and stability of all the derivatives at the CCSD(T)-F12/cc-pVTZ-F12 level. Overall, c-C4H3CN and c-C4H3CCH emerge as particularly promising candidates for interstellar detection, provided that the parental c-C4H4 is present in the gas phase. These findings highlight the potential for detecting polar derivatives of c-C4H4 as indirect evidence of its presence in the ISM, as it appears to be “invisible” to radioastronomical observations. Also, this study underscores the need for future laboratory and theoretical efforts to characterize the spectroscopic properties of the proposed derivatives, paving the way for their eventual identification in space.
Materias (normalizadas)
Química inorgánica
ISSN
1463-9076
Revisión por pares
SI
Patrocinador
Consejo Nacional de Humanidades, Ciencias y Tecnologías; Ministerio de Ciencia, Innovación y Universidades; Universidad de Valladolid
Version del Editor
Propietario de los Derechos
© 2025 The Author(s)
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item
Nombre:
Tamaño:
2.949Mb
Formato:
Adobe PDF
