Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/77253
Título
A Novel Subband Method for Instantaneous Speed Estimation of Induction Motors Under Varying Working Conditions
Autor
Año del Documento
2025
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Energies 2025, 18, 4538
Abstract
Robust speed estimation in induction motors (IM) is essential for control systems (espe-
cially in sensorless drive applications) and condition monitoring. Traditional model-based
techniques for inverter-fed IM provide a high accuracy but rely heavily on precise motor
parameter identification, requiring multiple sensors to monitor the necessary variables.
In contrast, model-independent methods that use rotor slot harmonics (RSH) in the sta-
tor current spectrum offer a better adaptability to various motor types and conditions.
However, many of these techniques are dependent on full-band processing, which reduces
noise immunity and increases computational cost. This paper introduces a novel subband
signal processing approach for rotor speed estimation focused on RSH tracking under
both steady and non-steady states. By limiting spectral analysis to relevant content, the
method significantly reduces computational demand. The technique employs an advanced
time-frequency analysis for high-resolution frequency identification, even in noisy settings.
Simulations and experiments show that the proposed approach outperforms conventional
RSH-based estimators, offering a robust and cost-effective solution for integrated speed
monitoring in practical applications.
Palabras Clave
digital signal processing; induction motor; rotor slot harmonics; spectral analysis; spectral estimation; speed estimation; subband decomposition; time-frequency domain
Revisión por pares
SI
Version del Editor
Propietario de los Derechos
Los autores
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Files in questo item
Nombre:
Tamaño:
4.598Mb
Formato:
Adobe PDF
Descripción:
Accepted paper for publication.
