Mostrar el registro sencillo del ítem

dc.contributor.authorMarcos Martínez, Diego 
dc.contributor.authorPérez Velasco, Sergio 
dc.contributor.authorMartínez Cagigal, Víctor 
dc.contributor.authorSantaMaría Vazquez, Eduardo 
dc.contributor.authorHornero Sánchez, Roberto 
dc.date.accessioned2025-09-30T12:20:02Z
dc.date.available2025-09-30T12:20:02Z
dc.date.issued2025
dc.identifier.citationBiomedical Signal Processing and Control, 2025, vol.110, p. 108147es
dc.identifier.issn1746-8094es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/78224
dc.descriptionProducción Científicaes
dc.description.abstractOcular artifacts (OA) are the most common artifacts in electroencephalography (EEG), significantly affecting signal quality and analysis. Common approaches like indepentent component analysis (ICA) or regression-based methods address this problem but require several minutes of subject-specific EEG and electrooculography (EOG) calibration, making them impractical for real-time applications like brain–computer interfaces (BCI). In this study, we introduce EEGOAR-Net, a deep learning architecture designed to reduce OA in EEG. It address these issues while also providing flexibility across various EEG montages. Based on U-Net architecture, EEGOAR-Net was trained with contaminated EEG signals in order to reconstruct them with OA attenuated, using SGEYESUB as the reference method. In addition, a novel training methodology based on masking signals from different channels was applied to make EEGOAR-Net independent of the EEG montage used. A cross- validation analysis was conducted to assess EEGOAR-Net’s performance, demonstrating its ability to reduce EEG-EOG correlations to chance levels across most brain regions with minimal information loss. Thus, the performance of EEGOAR-Net is comparable to that of the reference method without the need for subject- specific calibration or EOG channels. Furthermore, validation on an additional dataset confirmed effective blink reduction and superior preservation of neural information compared to the state-of-the-art models: 1D- ResCNN and IC-U-Net. EEGOAR-Net’s performance across datasets and versatility across montages prove it to be a reliable and practical solution for EEG-based research and BCI applications, ensuring a notable reduction of OA on signal while maintaining the integrity of neural information.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subject.classificationDeep learninges
dc.subject.classificationOcular artifactses
dc.subject.classificationElectroencephalographyes
dc.subject.classificationBrain–computer interfaceses
dc.subject.classificationElectrooculographyes
dc.titleCalibration-free Ocular artifact reduction in EEG signals using a montage-independent deep learning modeles
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2025 The Author(s)es
dc.identifier.doi10.1016/j.bspc.2025.108147es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1746809425006585es
dc.identifier.publicationfirstpage108147es
dc.identifier.publicationtitleBiomedical Signal Processing and Controles
dc.identifier.publicationvolume110es
dc.peerreviewedSIes
dc.description.projectEsta publicación forma parte del proyecto TED2021-129915B-I00, financiado por MICIU/AEI/10.13039/501100011033 y el programa NextGenerationEU/PRTR de la Unión Europea.es
dc.description.projectEste trabajo contó con el apoyo de los proyectos 0124_EUROAGE_MAS_4_E, cofinanciado por la Unión Europea a través del Programa Interreg VI-A España-Portugal (POCTEP) 2021-2027, y VA140P2 de la Federación Europea.es
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco32 Ciencias Médicases
dc.subject.unesco33 Ciencias Tecnológicases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem