Mostrar el registro sencillo del ítem
| dc.contributor.author | Marcos Martínez, Diego | |
| dc.contributor.author | Pérez Velasco, Sergio | |
| dc.contributor.author | Martínez Cagigal, Víctor | |
| dc.contributor.author | SantaMaría Vazquez, Eduardo | |
| dc.contributor.author | Hornero Sánchez, Roberto | |
| dc.date.accessioned | 2025-09-30T12:20:02Z | |
| dc.date.available | 2025-09-30T12:20:02Z | |
| dc.date.issued | 2025 | |
| dc.identifier.citation | Biomedical Signal Processing and Control, 2025, vol.110, p. 108147 | es |
| dc.identifier.issn | 1746-8094 | es |
| dc.identifier.uri | https://uvadoc.uva.es/handle/10324/78224 | |
| dc.description | Producción Científica | es |
| dc.description.abstract | Ocular artifacts (OA) are the most common artifacts in electroencephalography (EEG), significantly affecting signal quality and analysis. Common approaches like indepentent component analysis (ICA) or regression-based methods address this problem but require several minutes of subject-specific EEG and electrooculography (EOG) calibration, making them impractical for real-time applications like brain–computer interfaces (BCI). In this study, we introduce EEGOAR-Net, a deep learning architecture designed to reduce OA in EEG. It address these issues while also providing flexibility across various EEG montages. Based on U-Net architecture, EEGOAR-Net was trained with contaminated EEG signals in order to reconstruct them with OA attenuated, using SGEYESUB as the reference method. In addition, a novel training methodology based on masking signals from different channels was applied to make EEGOAR-Net independent of the EEG montage used. A cross- validation analysis was conducted to assess EEGOAR-Net’s performance, demonstrating its ability to reduce EEG-EOG correlations to chance levels across most brain regions with minimal information loss. Thus, the performance of EEGOAR-Net is comparable to that of the reference method without the need for subject- specific calibration or EOG channels. Furthermore, validation on an additional dataset confirmed effective blink reduction and superior preservation of neural information compared to the state-of-the-art models: 1D- ResCNN and IC-U-Net. EEGOAR-Net’s performance across datasets and versatility across montages prove it to be a reliable and practical solution for EEG-based research and BCI applications, ensuring a notable reduction of OA on signal while maintaining the integrity of neural information. | es |
| dc.format.mimetype | application/pdf | es |
| dc.language.iso | eng | es |
| dc.publisher | Elsevier | es |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
| dc.subject.classification | Deep learning | es |
| dc.subject.classification | Ocular artifacts | es |
| dc.subject.classification | Electroencephalography | es |
| dc.subject.classification | Brain–computer interfaces | es |
| dc.subject.classification | Electrooculography | es |
| dc.title | Calibration-free Ocular artifact reduction in EEG signals using a montage-independent deep learning model | es |
| dc.type | info:eu-repo/semantics/article | es |
| dc.rights.holder | © 2025 The Author(s) | es |
| dc.identifier.doi | 10.1016/j.bspc.2025.108147 | es |
| dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S1746809425006585 | es |
| dc.identifier.publicationfirstpage | 108147 | es |
| dc.identifier.publicationtitle | Biomedical Signal Processing and Control | es |
| dc.identifier.publicationvolume | 110 | es |
| dc.peerreviewed | SI | es |
| dc.description.project | Esta publicación forma parte del proyecto TED2021-129915B-I00, financiado por MICIU/AEI/10.13039/501100011033 y el programa NextGenerationEU/PRTR de la Unión Europea. | es |
| dc.description.project | Este trabajo contó con el apoyo de los proyectos 0124_EUROAGE_MAS_4_E, cofinanciado por la Unión Europea a través del Programa Interreg VI-A España-Portugal (POCTEP) 2021-2027, y VA140P2 de la Federación Europea. | es |
| dc.rights | Atribución-NoComercial 4.0 Internacional | * |
| dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
| dc.subject.unesco | 32 Ciencias Médicas | es |
| dc.subject.unesco | 33 Ciencias Tecnológicas | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución-NoComercial 4.0 Internacional




