Show simple item record

dc.contributor.authorAmado Caballero, Patricia 
dc.contributor.authorVarona Peña, Inés
dc.contributor.authorGutiérrez García, Benjamín Gerardo
dc.contributor.authorAguiar Pérez, Javier Manuel 
dc.contributor.authorRodríguez Cayetano, Manuel 
dc.contributor.authorGómez Gil, Jaime 
dc.contributor.authorGarmendia Leiza, José Ramón
dc.contributor.authorCasaseca de la Higuera, Juan Pablo 
dc.date.accessioned2025-10-14T06:53:55Z
dc.date.available2025-10-14T06:53:55Z
dc.date.issued2025
dc.identifier.citationSciTePress, 2025, 2, p. 491-498.es
dc.identifier.issn2184-4305es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/78601
dc.descriptionProducción Científicaes
dc.description.abstractRespiratory diseases, including COPD and cancer, are among the leading causes of mortality worldwide, often resulting in prolonged dependency and impairment. Telemedicine offers immense potential for managing respiratory diseases, but its effectiveness is hindered by the lack of reliable objective measures for symptoms. Recent advances in deep learning have significantly enhanced the detection and analysis of coughing episodes, a key symptom of respiratory conditions, by leveraging audio signals and pattern recognition techniques. This paper introduces an efficient cough detection system tailored for real-time monitoring on low-end computational devices, such as smartphones. By integrating Explainable Artificial Intelligence (XAI), we identify salient regions in audio spectrograms that are crucial for cough detection, enabling the design of an optimized Convolutional Neural Network (CNN). The optimized CNN maintains high detection performance while significantly reducing computation time and memory usage.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSciTePresses
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectEnfermedades respiratoriases
dc.subjectToses
dc.subjectAnálisis de audioes
dc.subjectCNNes
dc.subjectXAIes
dc.subjectMapas de oclusiónes
dc.subjectOptimizaciónes
dc.titleOptimization of a Deep-Learning-Based Cough Detector Using eXplainable Artificial Intelligence for Implementation on Mobile Deviceses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.5220/0013141500003911es
dc.relation.publisherversionhttps://www.scitepress.org/Link.aspx?doi=10.5220/0013141500003911es
dc.identifier.publicationfirstpage491es
dc.identifier.publicationlastpage498es
dc.identifier.publicationvolume2es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia, Innovación y Universidades (MICIU) / Agencia Estatal de Investigación (AEI): TED2021- 131536B-I00 (financiado por MCIN/AEI/10.13039/501100011033 y fondos NextGenerationEU/PRTR)es
dc.description.projectGerencia Regional de Salud de la Junta de Castilla y León: GRS 2837/C/2023es
dc.description.projectEU Horizon 2020 Research and Innovation Programme: Marie Sklodowska-Curie (grant agreement No 101008297)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record