Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/78601
Título
Optimization of a Deep-Learning-Based Cough Detector Using eXplainable Artificial Intelligence for Implementation on Mobile Devices
Autor
Año del Documento
2025
Editorial
SciTePress
Descripción
Producción Científica
Documento Fuente
SciTePress, 2025, 2, p. 491-498.
Resumen
Respiratory diseases, including COPD and cancer, are among the leading causes of mortality worldwide, often resulting in prolonged dependency and impairment. Telemedicine offers immense potential for managing respiratory diseases, but its effectiveness is hindered by the lack of reliable objective measures for symptoms. Recent advances in deep learning have significantly enhanced the detection and analysis of coughing episodes, a key symptom of respiratory conditions, by leveraging audio signals and pattern recognition techniques. This paper introduces an efficient cough detection system tailored for real-time monitoring on low-end computational devices, such as smartphones. By integrating Explainable Artificial Intelligence (XAI), we identify salient regions in audio spectrograms that are crucial for cough detection, enabling the design of an optimized Convolutional Neural Network (CNN). The optimized CNN maintains high detection performance while significantly reducing computation time and memory usage.
Materias (normalizadas)
Enfermedades respiratorias
Tos
Análisis de audio
CNN
XAI
Mapas de oclusión
Optimización
ISSN
2184-4305
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia, Innovación y Universidades (MICIU) / Agencia Española de Investigación (AEI): TED2021- 131536B-I00 (financiado por MCIN/AEI/10.13039/501100011033 y fondos NextGenerationEU/PRTR)
Gerencia Regional de Salud de la Junta de Castilla y León: GRS 2837/C/2023
EU Horizon 2020 Research and Innovation Programme: Marie Sklodowska-Curie (grant agreement No 101008297)
Gerencia Regional de Salud de la Junta de Castilla y León: GRS 2837/C/2023
EU Horizon 2020 Research and Innovation Programme: Marie Sklodowska-Curie (grant agreement No 101008297)
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
