Zur Kurzanzeige

dc.contributor.authorCasaseca de la Higuera, Juan Pablo 
dc.contributor.authorAguiar Pérez, Javier Manuel 
dc.contributor.authorAmado Caballero, Patricia 
dc.contributor.authorMorgado, Antonio J.
dc.contributor.authorSilva Moreira, Joana da
dc.contributor.authorLuo, Chunbo
dc.contributor.authorWang, Xinheng
dc.date.accessioned2025-10-14T07:43:39Z
dc.date.available2025-10-14T07:43:39Z
dc.date.issued2025
dc.identifier.citationZhu, Yingbo and Vichare, Parag and Shakir, Muhammad Zeeshan and Sturley, Hamish and Salva-Garcia, Pablo and Salau, Nurudeen. 2025 International Conference on Software, Knowledge, Information Management & Applications (SKIMA). Paisley: United Kingdom, 2025, p. 1-7.es
dc.identifier.isbn978-1-6654-5734-7es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/78604
dc.descriptionProducción Científicaes
dc.description.abstractThis paper introduces an online active deep learning framework tailored for intelligent and sustainable aerial-terrestrial IoT networks. The framework utilizes Long Short-Term Memory (LSTM) models, enhanced with active learning and incremental updates, to address the challenges of dynamic network traffic prediction. Model updates are selectively applied, prioritizing samples with higher prediction errors, enabling the system to adapt dynamically to evolving traffic patterns and improving predictive accuracy. The proposed approach accommodates non-stationary data streams and prioritizes critical information, establishing a robust foundation for effective network management. The framework's performance was validated using the Milan traffic dataset, demonstrating its effectiveness compared to non-weighted online learning methods and static models.es
dc.format.extent7 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherIEEE Computer Societyes
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.subjectRedes LSTMes
dc.subjectAprendizaje en líneaes
dc.subjectAprendizaje activoes
dc.subjectPredicción del tráfico de redes
dc.titleOnline Active Learning For LSTM-Based Network Traffic Predictiones
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.rights.holder© IEEEes
dc.identifier.doi10.1109/SKIMA66621.2025.11155629es
dc.relation.publisherversionhttps://www.computer.org/csdl/proceedings-article/skima/2025/11155629/2a3z3mEiTbaes
dc.title.event2025 International Conference on Software, Knowledge, Information Management & Applications (SKIMA)es
dc.description.projectMinisterio de Ciencia, Innovación y Universidades (MICIU) / Agencia Estatal de Investigación (AEI): TED2021-131536B-I00 (financiado por MCIN/AEI/10.13039/501100011033 y fondos NextGenerationEU/PRTR)es
dc.description.projectResearch and Innovation Programme under the Marie Sklodowska-Curie grant agreement No 101008297es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige