| dc.contributor.author | Casaseca de la Higuera, Juan Pablo | |
| dc.contributor.author | Aguiar Pérez, Javier Manuel | |
| dc.contributor.author | Amado Caballero, Patricia | |
| dc.contributor.author | Morgado, Antonio J. | |
| dc.contributor.author | Silva Moreira, Joana da | |
| dc.contributor.author | Luo, Chunbo | |
| dc.contributor.author | Wang, Xinheng | |
| dc.date.accessioned | 2025-10-14T07:43:39Z | |
| dc.date.available | 2025-10-14T07:43:39Z | |
| dc.date.issued | 2025 | |
| dc.identifier.citation | Zhu, Yingbo and Vichare, Parag and Shakir, Muhammad Zeeshan and Sturley, Hamish and Salva-Garcia, Pablo and Salau, Nurudeen. 2025 International Conference on Software, Knowledge, Information Management & Applications (SKIMA). Paisley: United Kingdom, 2025, p. 1-7. | es |
| dc.identifier.isbn | 978-1-6654-5734-7 | es |
| dc.identifier.uri | https://uvadoc.uva.es/handle/10324/78604 | |
| dc.description | Producción Científica | es |
| dc.description.abstract | This paper introduces an online active deep learning framework tailored for intelligent and sustainable aerial-terrestrial IoT networks. The framework utilizes Long Short-Term Memory (LSTM) models, enhanced with active learning and incremental updates, to address the challenges of dynamic network traffic prediction. Model updates are selectively applied, prioritizing samples with higher prediction errors, enabling the system to adapt dynamically to evolving traffic patterns and improving predictive accuracy. The proposed approach accommodates non-stationary data streams and prioritizes critical information, establishing a robust foundation for effective network management. The framework's performance was validated using the Milan traffic dataset, demonstrating its effectiveness compared to non-weighted online learning methods and static models. | es |
| dc.format.extent | 7 p. | es |
| dc.format.mimetype | application/pdf | es |
| dc.language.iso | eng | es |
| dc.publisher | IEEE Computer Society | es |
| dc.rights.accessRights | info:eu-repo/semantics/restrictedAccess | es |
| dc.subject | Redes LSTM | es |
| dc.subject | Aprendizaje en línea | es |
| dc.subject | Aprendizaje activo | es |
| dc.subject | Predicción del tráfico de red | es |
| dc.title | Online Active Learning For LSTM-Based Network Traffic Prediction | es |
| dc.type | info:eu-repo/semantics/conferenceObject | es |
| dc.rights.holder | © IEEE | es |
| dc.identifier.doi | 10.1109/SKIMA66621.2025.11155629 | es |
| dc.relation.publisherversion | https://www.computer.org/csdl/proceedings-article/skima/2025/11155629/2a3z3mEiTba | es |
| dc.title.event | 2025 International Conference on Software, Knowledge, Information Management & Applications (SKIMA) | es |
| dc.description.project | Ministerio de Ciencia, Innovación y Universidades (MICIU) / Agencia Estatal de Investigación (AEI): TED2021-131536B-I00 (financiado por MCIN/AEI/10.13039/501100011033 y fondos NextGenerationEU/PRTR) | es |
| dc.description.project | Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No 101008297 | es |
| dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es |