Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/78604
Título
Online Active Learning For LSTM-Based Network Traffic Prediction
Autor
Congreso
2025 International Conference on Software, Knowledge, Information Management & Applications (SKIMA)
Año del Documento
2025
Editorial
IEEE Computer Society
Descripción Física
7 p.
Descripción
Producción Científica
Documento Fuente
Zhu, Yingbo and Vichare, Parag and Shakir, Muhammad Zeeshan and Sturley, Hamish and Salva-Garcia, Pablo and Salau, Nurudeen. 2025 International Conference on Software, Knowledge, Information Management & Applications (SKIMA). Paisley: United Kingdom, 2025, p. 1-7.
Resumen
This paper introduces an online active deep learning framework tailored for intelligent and sustainable aerial-terrestrial IoT networks. The framework utilizes Long Short-Term Memory (LSTM) models, enhanced with active learning and incremental updates, to address the challenges of dynamic network traffic prediction. Model updates are selectively applied, prioritizing samples with higher prediction errors, enabling the system to adapt dynamically to evolving traffic patterns and improving predictive accuracy. The proposed approach accommodates non-stationary data streams and prioritizes critical information, establishing a robust foundation for effective network management. The framework's performance was validated using the Milan traffic dataset, demonstrating its effectiveness compared to non-weighted online learning methods and static models.
Materias (normalizadas)
Redes LSTM
Aprendizaje en línea
Aprendizaje activo
Predicción del tráfico de red
ISBN
978-1-6654-5734-7
Patrocinador
Ministerio de Ciencia, Innovación y Universidades (MICIU) / Agencia Española de Investigación (AEI): TED2021-131536B-I00 (financiado por MCIN/AEI/10.13039/501100011033 y fondos NextGenerationEU/PRTR)
Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No 101008297
Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No 101008297
Version del Editor
Propietario de los Derechos
© IEEE
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
restrictedAccess
Aparece en las colecciones
Ficheros en el ítem