dc.contributor.author | Merino Fidalgo, Sergio | |
dc.contributor.author | Sánchez Girón, Celia | |
dc.contributor.author | Zalama Casanova, Eduardo | |
dc.contributor.author | Gómez García-Bermejo, Jaime | |
dc.contributor.author | Duque Domingo, Jaime | |
dc.date.accessioned | 2025-10-15T09:09:02Z | |
dc.date.available | 2025-10-15T09:09:02Z | |
dc.date.issued | 2025 | |
dc.identifier.citation | Robotics and Autonomous Systems, 2025, vol. 194, p. 105165 | es |
dc.identifier.issn | 0921-8890 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/78652 | |
dc.description | Producción Científica | es |
dc.description.abstract | Large Language Models have recently emerged as a powerful tool for generating flexible and context-aware
robotic behavior. However, adapting to unforeseen events and ensuring robust task completion remain
significant challenges. This paper presents a novel system that leverages LLMs and Behavior Trees to enable
robots to generate, execute, and adapt task plans based on natural language commands. The system employs
ChatGPT to process user instructions, generating initial Behavior Trees that encapsulate the required task
steps. A modular architecture, combining the BT planner and a Failure Interpreter module, allows the system
to dynamically adjust Behavior Trees when execution challenges or environmental changes arise.
Unlike conventional methods that rely on static Behavior Trees or predefined state machines, our approach
ensures adaptability by integrating a Failure Interpreter capable of identifying execution issues and proposing
alternative plans or user clarifications in real time. This adaptability makes the system robust to disturbances
and allows for seamless human–robot interaction. We validate the proposed methodology using experiments
on a social robot across various scenarios in our workplace, demonstrating its effectiveness in generating
executable Behavior Trees and responding to execution failures. The approach achieves an 89.6% success rate
in a realistic home environment, highlighting the effectiveness of LLM-powered Behavior Trees in enabling
robust and flexible robot behavior from natural language input | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.classification | Planning and execution | es |
dc.subject.classification | Networks of robots and intelligent sensors | es |
dc.subject.classification | Mobile robots | es |
dc.subject.classification | Cognitive aspects of automation systems and humans | es |
dc.subject.classification | Large language models | es |
dc.title | Behavior tree generation and adaptation for a social robot control with LLMs | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2025 The Author(s) | es |
dc.identifier.doi | 10.1016/j.robot.2025.105165 | es |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S0921889025002623 | es |
dc.identifier.publicationfirstpage | 105165 | es |
dc.identifier.publicationtitle | Robotics and Autonomous Systems | es |
dc.identifier.publicationvolume | 194 | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Ciencia, Innovación y Universidades - MCIN/AEI/10.13039/501100011033 /FEDER, UE (proyecto ROSOGAR PID2021-123020OBI00) | es |
dc.description.project | Junta de Castilla y León - Consejería de Familia- (proyecto EIAROB - Next Generation EU IN./22/M/01) | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 33 Ciencias Tecnológicas | es |