Mostrar registro simples

dc.contributor.authorMerino Fidalgo, Sergio
dc.contributor.authorSánchez Girón, Celia
dc.contributor.authorZalama Casanova, Eduardo 
dc.contributor.authorGómez García-Bermejo, Jaime 
dc.contributor.authorDuque Domingo, Jaime 
dc.date.accessioned2025-10-15T09:09:02Z
dc.date.available2025-10-15T09:09:02Z
dc.date.issued2025
dc.identifier.citationRobotics and Autonomous Systems, 2025, vol. 194, p. 105165es
dc.identifier.issn0921-8890es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/78652
dc.descriptionProducción Científicaes
dc.description.abstractLarge Language Models have recently emerged as a powerful tool for generating flexible and context-aware robotic behavior. However, adapting to unforeseen events and ensuring robust task completion remain significant challenges. This paper presents a novel system that leverages LLMs and Behavior Trees to enable robots to generate, execute, and adapt task plans based on natural language commands. The system employs ChatGPT to process user instructions, generating initial Behavior Trees that encapsulate the required task steps. A modular architecture, combining the BT planner and a Failure Interpreter module, allows the system to dynamically adjust Behavior Trees when execution challenges or environmental changes arise. Unlike conventional methods that rely on static Behavior Trees or predefined state machines, our approach ensures adaptability by integrating a Failure Interpreter capable of identifying execution issues and proposing alternative plans or user clarifications in real time. This adaptability makes the system robust to disturbances and allows for seamless human–robot interaction. We validate the proposed methodology using experiments on a social robot across various scenarios in our workplace, demonstrating its effectiveness in generating executable Behavior Trees and responding to execution failures. The approach achieves an 89.6% success rate in a realistic home environment, highlighting the effectiveness of LLM-powered Behavior Trees in enabling robust and flexible robot behavior from natural language inputes
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationPlanning and executiones
dc.subject.classificationNetworks of robots and intelligent sensorses
dc.subject.classificationMobile robotses
dc.subject.classificationCognitive aspects of automation systems and humanses
dc.subject.classificationLarge language modelses
dc.titleBehavior tree generation and adaptation for a social robot control with LLMses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2025 The Author(s)es
dc.identifier.doi10.1016/j.robot.2025.105165es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0921889025002623es
dc.identifier.publicationfirstpage105165es
dc.identifier.publicationtitleRobotics and Autonomous Systemses
dc.identifier.publicationvolume194es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia, Innovación y Universidades - MCIN/AEI/10.13039/501100011033 /FEDER, UE (proyecto ROSOGAR PID2021-123020OBI00)es
dc.description.projectJunta de Castilla y León - Consejería de Familia- (proyecto EIAROB - Next Generation EU IN./22/M/01)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco33 Ciencias Tecnológicases


Arquivos deste item

Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples