• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Institutos de Investigación
    • Instituto de las Tecnologías Avanzadas en la Producción (ITAP)
    • ITAP - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Institutos de Investigación
    • Instituto de las Tecnologías Avanzadas en la Producción (ITAP)
    • ITAP - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/78652

    Título
    Behavior tree generation and adaptation for a social robot control with LLMs
    Autor
    Merino Fidalgo, Sergio
    Sánchez Girón, Celia
    Zalama Casanova, EduardoAutoridad UVA Orcid
    Gómez García-Bermejo, JaimeAutoridad UVA Orcid
    Duque Domingo, JaimeAutoridad UVA Orcid
    Año del Documento
    2025
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Robotics and Autonomous Systems, 2025, vol. 194, p. 105165
    Resumo
    Large Language Models have recently emerged as a powerful tool for generating flexible and context-aware robotic behavior. However, adapting to unforeseen events and ensuring robust task completion remain significant challenges. This paper presents a novel system that leverages LLMs and Behavior Trees to enable robots to generate, execute, and adapt task plans based on natural language commands. The system employs ChatGPT to process user instructions, generating initial Behavior Trees that encapsulate the required task steps. A modular architecture, combining the BT planner and a Failure Interpreter module, allows the system to dynamically adjust Behavior Trees when execution challenges or environmental changes arise. Unlike conventional methods that rely on static Behavior Trees or predefined state machines, our approach ensures adaptability by integrating a Failure Interpreter capable of identifying execution issues and proposing alternative plans or user clarifications in real time. This adaptability makes the system robust to disturbances and allows for seamless human–robot interaction. We validate the proposed methodology using experiments on a social robot across various scenarios in our workplace, demonstrating its effectiveness in generating executable Behavior Trees and responding to execution failures. The approach achieves an 89.6% success rate in a realistic home environment, highlighting the effectiveness of LLM-powered Behavior Trees in enabling robust and flexible robot behavior from natural language input
    Materias Unesco
    33 Ciencias Tecnológicas
    Palabras Clave
    Planning and execution
    Networks of robots and intelligent sensors
    Mobile robots
    Cognitive aspects of automation systems and humans
    Large language models
    ISSN
    0921-8890
    Revisión por pares
    SI
    DOI
    10.1016/j.robot.2025.105165
    Patrocinador
    Ministerio de Ciencia, Innovación y Universidades - MCIN/AEI/10.13039/501100011033 /FEDER, UE (proyecto ROSOGAR PID2021-123020OBI00)
    Junta de Castilla y León - Consejería de Familia- (proyecto EIAROB - Next Generation EU IN./22/M/01)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0921889025002623
    Propietario de los Derechos
    © 2025 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/78652
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • ITAP - Artículos de revista [55]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    Behavior-tree-generation.pdf
    Tamaño:
    2.234Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10