Mostrar registro simples

dc.contributor.authorLi, Peisong
dc.contributor.authorWang, Xinheng
dc.contributor.authorLi, Changle
dc.contributor.authorIqbal, Muddesar
dc.contributor.authorAl-Dulaimi, Anwer
dc.contributor.authorI, Chih-Lin
dc.contributor.authorCasaseca de la Higuera, Juan Pablo 
dc.date.accessioned2025-10-16T10:14:21Z
dc.date.available2025-10-16T10:14:21Z
dc.date.issued2025
dc.identifier.citationIEEE Transactions on Intelligent Transportation Systems, 2025, p. 1-30.es
dc.identifier.issn1524-9050es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/78725
dc.descriptionProducción Científicaes
dc.description.abstractWith the development of intelligent transportation systems, vehicular edge computing (VEC) has played a pivotal role by integrating computation, storage, and analytics closer to the vehicles. VEC represents a paradigm shift towards real-time data processing and intelligent decision-making, overcoming challenges associated with latency and resource constraints. In VEC scenarios, the efficient scheduling and allocation of computing resources are fundamental research areas, enabling real-time processing of vehicular tasks and intelligent decision-making. This paper provides a comprehensive review of the latest research in Deep Reinforcement Learning (DRL)-based task scheduling and resource allocation in VEC environments. Firstly, the paper outlines the development of VEC and introduces the core concepts of DRL, shedding light on their growing importance in the dynamic VEC landscape. Secondly, the state-of-the-art research in DRL-based task scheduling and resource allocation is categorized, reviewed, and discussed. Finally, the paper discusses current challenges in the field, offering insights into the promising future of VEC applications within the realm of intelligent transportation systems.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherIEEEes
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.subjectComputación periférica vehiculares
dc.subjectAprendizaje profundo por refuerzoes
dc.subjectProgramación de tareases
dc.subjectAsignación de recursoses
dc.titleDeep Reinforcement Learning-Based Task Scheduling and Resource Allocation for Vehicular Edge Computing: A Surveyes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2025 IEEE. Todos los derechos reservadoses
dc.identifier.doi10.1109/TITS.2025.3607910es
dc.relation.publisherversionhttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11173255es
dc.identifier.publicationfirstpage1es
dc.identifier.publicationlastpage30es
dc.identifier.publicationtitleIEEE Transactions on Intelligent Transportation Systemses
dc.peerreviewedSIes
dc.description.projectPrince Sultan Defence Studies and Research Centre (PSDSRC): PID000085_01_04 and PID-000085_01_03es
dc.description.projectNational Natural Science Foundation of China: 52175030 and 62231020es
dc.description.projectInnovation Capability Support Program of Shaanxi: 2024RS-CXTD-0es
dc.description.projectTechnology Innovation Leading Program of Shaanxi: 2023KXJ-116es
dc.description.projectEuropean Union Horizon 2020 Research and Innovation Program: Marie Sklodowska-Curie (101008297)es
dc.identifier.essn1558-0016es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Arquivos deste item

Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples