Zur Kurzanzeige

dc.contributor.authorPrenkaj, Bardh
dc.contributor.authorVillaizán Vallelado, Mario 
dc.contributor.authorLeemann, Tobias
dc.contributor.authorKasneci, Gjergji
dc.date.accessioned2025-10-20T11:52:46Z
dc.date.available2025-10-20T11:52:46Z
dc.date.issued2024
dc.identifier.citationBaeza Yates, Ricardo y Bonchi, Francesco. KDD '24: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Barcelona: Association for Computing Machinery, 2024, p. 2420-2431.es
dc.identifier.isbn9798400704901es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/78810
dc.descriptionProducción Científicaes
dc.description.abstractWe present GRACIE (Graph Recalibration and Adaptive Counterfactual Inspection and Explanation), a novel approach for generative classification and counterfactual explanations of dynamically changing graph data. We study graph classification problems through the lens of generative classifiers. We propose a dynamic, self-supervised latent variable model that updates by identifying plausible counterfactuals for input graphs and recalibrating decision boundaries through contrastive optimization. Unlike prior work, we do not rely on linear separability between the learned graph representations to find plausible counterfactuals. Moreover, GRACIE eliminates the need for stochastic sampling in latent spaces and graph-matching heuristics. Our work distills the implicit link between generative classification and loss functions in the latent space, a key insight to understanding recent successes with this architecture. We further observe the inherent trade-off between validity and pulling explainee instances towards the central region of the latent space, empirically demonstrating our theoretical findings. In extensive experiments on synthetic and real-world graph data, we attain considerable improvements, reaching ~99% validity when sampling sets of counterfactuals even in the challenging setting of dynamic data landscapes.es
dc.format.extent11es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherAssociation for Computing Machineryes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectExplicabilidad contrafactuales
dc.subjectGráficos dinámicoses
dc.subjectRedes neuronales gráficases
dc.subjectAutoencodificadores gráficoses
dc.titleUnifying Evolution, Explanation, and Discernment: A Generative Approach for Dynamic Graph Counterfactualses
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.rights.holder© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.es
dc.identifier.doi10.1145/3637528.3671831es
dc.relation.publisherversionhttps://dl.acm.org/doi/pdf/10.1145/3637528.3671831es
dc.title.eventKDD 2024 - Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mininges
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige