• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Comunicaciones a congresos, conferencias, etc.
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Comunicaciones a congresos, conferencias, etc.
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/78810

    Título
    Unifying Evolution, Explanation, and Discernment: A Generative Approach for Dynamic Graph Counterfactuals
    Autor
    Prenkaj, Bardh
    Villaizán Vallelado, MarioAutoridad UVA Orcid
    Leemann, Tobias
    Kasneci, Gjergji
    Congreso
    KDD 2024 - Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
    Año del Documento
    2024
    Editorial
    Association for Computing Machinery
    Descripción Física
    11
    Descripción
    Producción Científica
    Documento Fuente
    Baeza Yates, Ricardo y Bonchi, Francesco. KDD '24: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Barcelona: Association for Computing Machinery, 2024, p. 2420-2431.
    Resumen
    We present GRACIE (Graph Recalibration and Adaptive Counterfactual Inspection and Explanation), a novel approach for generative classification and counterfactual explanations of dynamically changing graph data. We study graph classification problems through the lens of generative classifiers. We propose a dynamic, self-supervised latent variable model that updates by identifying plausible counterfactuals for input graphs and recalibrating decision boundaries through contrastive optimization. Unlike prior work, we do not rely on linear separability between the learned graph representations to find plausible counterfactuals. Moreover, GRACIE eliminates the need for stochastic sampling in latent spaces and graph-matching heuristics. Our work distills the implicit link between generative classification and loss functions in the latent space, a key insight to understanding recent successes with this architecture. We further observe the inherent trade-off between validity and pulling explainee instances towards the central region of the latent space, empirically demonstrating our theoretical findings. In extensive experiments on synthetic and real-world graph data, we attain considerable improvements, reaching ~99% validity when sampling sets of counterfactuals even in the challenging setting of dynamic data landscapes.
    Materias (normalizadas)
    Explicabilidad contrafactual
    Gráficos dinámicos
    Redes neuronales gráficas
    Autoencodificadores gráficos
    ISBN
    9798400704901
    DOI
    10.1145/3637528.3671831
    Version del Editor
    https://dl.acm.org/doi/pdf/10.1145/3637528.3671831
    Propietario de los Derechos
    © 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/78810
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP24 - Comunicaciones a congresos, conferencias, etc. [22]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Unifying Evolution, Explanation, and Discernment.pdf
    Tamaño:
    2.699Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10