Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/78810
Título
Unifying Evolution, Explanation, and Discernment: A Generative Approach for Dynamic Graph Counterfactuals
Congreso
KDD 2024 - Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
Año del Documento
2024
Editorial
Association for Computing Machinery
Descripción Física
11
Descripción
Producción Científica
Documento Fuente
Baeza Yates, Ricardo y Bonchi, Francesco. KDD '24: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Barcelona: Association for Computing Machinery, 2024, p. 2420-2431.
Resumen
We present GRACIE (Graph Recalibration and Adaptive Counterfactual Inspection and Explanation), a novel approach for generative classification and counterfactual explanations of dynamically changing graph data. We study graph classification problems through the lens of generative classifiers. We propose a dynamic, self-supervised latent variable model that updates by identifying plausible counterfactuals for input graphs and recalibrating decision boundaries through contrastive optimization. Unlike prior work, we do not rely on linear separability between the learned graph representations to find plausible counterfactuals. Moreover, GRACIE eliminates the need for stochastic sampling in latent spaces and graph-matching heuristics. Our work distills the implicit link between generative classification and loss functions in the latent space, a key insight to understanding recent successes with this architecture. We further observe the inherent trade-off between validity and pulling explainee instances towards the central region of the latent space, empirically demonstrating our theoretical findings. In extensive experiments on synthetic and real-world graph data, we attain considerable improvements, reaching ~99% validity when sampling sets of counterfactuals even in the challenging setting of dynamic data landscapes.
Materias (normalizadas)
Explicabilidad contrafactual
Gráficos dinámicos
Redes neuronales gráficas
Autoencodificadores gráficos
ISBN
9798400704901
Version del Editor
Propietario de los Derechos
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
