Afficher la notice abrégée

dc.contributor.authorPrenkaj, Bardh
dc.contributor.authorVillaizán Vallelado, Mario 
dc.contributor.authorLeemann, Tobias
dc.contributor.authorKasneci, Gjergji
dc.date.accessioned2025-10-20T12:27:36Z
dc.date.available2025-10-20T12:27:36Z
dc.date.issued2025
dc.identifier.citationMeo, Rosa y Silvestri, Fabrizio. Machine Learning and Principles and Practice of Knowledge Discovery in Databases International Workshops of ECML PKDD 2023. Turín, 2025, p. 325-337.es
dc.identifier.isbn9783031746291es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/78814
dc.descriptionProducción Científicaes
dc.description.abstractWe introduce a novel semi-supervised Graph Counterfactual Explainer (GCE) methodology, Dynamic GRAph Counterfactual Explainer (DyGRACE). It leverages initial knowledge about the data distribution to search for valid counterfactuals while avoiding using information from potentially outdated decision functions in subsequent time steps. Employing two graph autoencoders (GAEs), DyGRACE learns the representation of each class in a binary classification scenario. The GAEs minimise the reconstruction error between the original graph and its learned representation during training. The method involves (i) optimising a parametric density function (implemented as a logistic regression function) to identify counterfactuals by maximising the factual autoencoder’s reconstruction error, (ii) minimising the counterfactual autoencoder’s error, and (iii) maximising the similarity between the factual and counterfactual graphs. This semi-supervised approach is independent of an underlying black-box oracle. A logistic regression model is trained on a set of graph pairs to learn weights that aid in finding counterfactuals. At inference, for each unseen graph, the logistic regressor identifies the best counterfactual candidate using these learned weights, while the GAEs can be iteratively updated to represent the continual adaptation of the learned graph representation over iterations. DyGRACE is quite effective and can act as a drift detector, identifying distributional drift based on differences in reconstruction errors between iterations. It avoids reliance on the oracle’s predictions in successive iterations, thereby increasing the efficiency of counterfactual discovery. DyGRACE, with its capacity for contrastive learning and drift detection, will offer new avenues for semi-supervised learning and explanation generation.es
dc.format.extent12es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringer Science and Business Media Deutschland GmbHes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.subjectExplicabilidad contrafactual gráficaes
dc.subjectExplicabilidad dinámicaes
dc.subjectExplicaciones dependientes del tiempoes
dc.titleAdapting to Change: Robust Counterfactual Explanations in Dynamic Data Landscapeses
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.rights.holder© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025es
dc.identifier.doi10.1007/978-3-031-74630-7_22es
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007/978-3-031-74630-7_22es
dc.title.eventMachine Learning and Principles and Practice of Knowledge Discovery in Databases - International Workshops of ECML PKDD 2023es
dc.description.projectPNRR MUR: PE0000013- FAIRes
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersiones


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée