Mostrar el registro sencillo del ítem

dc.contributor.authorVillaizán Vallelado, Mario 
dc.contributor.authorSalvatori, Matteo
dc.contributor.authorLatifzadeh, Kayhan
dc.contributor.authorPenta, Antonio
dc.contributor.authorLeiva, Luis A.
dc.contributor.authorArapakis, Ioannis
dc.date.accessioned2025-10-21T06:20:56Z
dc.date.available2025-10-21T06:20:56Z
dc.date.issued2025
dc.identifier.citationNicola Ferro, Maria Maistro, Gabriella Pasi, Omar Alonso, Andrew Trotman, Suzan Verberne. SIGIR '25: Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval. Padua, 2025, p. 255-265.es
dc.identifier.isbn9798400715921es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/78833
dc.descriptionProducción Científicaes
dc.description.abstractModern Search Engine Results Pages (SERPs) present complex layouts where multiple elements compete for visibility. Attention modelling is crucial for optimising web design and computational advertising, whereas attention metrics can inform ad placement and revenue strategies. We introduce AdSight, a method leveraging mouse cursor trajectories to quantify in a scalable and accurate manner user attention in multi-slot environments like SERPs. AdSight uses a novel Transformer-based sequence-to-sequence architecture where the encoder processes cursor trajectory embeddings, and the decoder incorporates slot-specific features, enabling robust attention prediction across various SERP layouts. We evaluate our approach on two Machine Learning tasks: (1)~regression, to predict fixation times and counts; and (2)~classification, to determine some slot types were noticed. Our findings demonstrate the model's ability to predict attention with unprecedented precision, offering actionable insights for researchers and practitioners.es
dc.format.extent10 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherAssociation for Computing Machinery, Inces
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectSERPes
dc.subjectBúsqueda patrocinadaes
dc.subjectPublicidad onlinees
dc.subjectSeguimiento del cursor del ratónes
dc.subjectAnuncios multiespacioes
dc.subjectVisualizaciones directases
dc.subjectAtención del usuarioes
dc.subjectRedes neuronaleses
dc.titleAdSight: Scalable and Accurate Quantification of User Attention in Multi-Slot Sponsored Searches
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.rights.holder© 2025 Copyright held by the owner/author(s).es
dc.identifier.doi10.1145/3726302.3729891es
dc.relation.publisherversionhttps://dl.acm.org/doi/pdf/10.1145/3726302.3729891es
dc.title.eventSIGIR 2025 - Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrievales
dc.description.projectEuropean Innovation Council (Pathfinder program): SYMBIOTIK project, grant 101071147es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem