Mostrar el registro sencillo del ítem
| dc.contributor.author | Villaizán Vallelado, Mario | |
| dc.contributor.author | Salvatori, Matteo | |
| dc.contributor.author | Latifzadeh, Kayhan | |
| dc.contributor.author | Penta, Antonio | |
| dc.contributor.author | Leiva, Luis A. | |
| dc.contributor.author | Arapakis, Ioannis | |
| dc.date.accessioned | 2025-10-21T06:20:56Z | |
| dc.date.available | 2025-10-21T06:20:56Z | |
| dc.date.issued | 2025 | |
| dc.identifier.citation | Nicola Ferro, Maria Maistro, Gabriella Pasi, Omar Alonso, Andrew Trotman, Suzan Verberne. SIGIR '25: Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval. Padua, 2025, p. 255-265. | es |
| dc.identifier.isbn | 9798400715921 | es |
| dc.identifier.uri | https://uvadoc.uva.es/handle/10324/78833 | |
| dc.description | Producción Científica | es |
| dc.description.abstract | Modern Search Engine Results Pages (SERPs) present complex layouts where multiple elements compete for visibility. Attention modelling is crucial for optimising web design and computational advertising, whereas attention metrics can inform ad placement and revenue strategies. We introduce AdSight, a method leveraging mouse cursor trajectories to quantify in a scalable and accurate manner user attention in multi-slot environments like SERPs. AdSight uses a novel Transformer-based sequence-to-sequence architecture where the encoder processes cursor trajectory embeddings, and the decoder incorporates slot-specific features, enabling robust attention prediction across various SERP layouts. We evaluate our approach on two Machine Learning tasks: (1)~regression, to predict fixation times and counts; and (2)~classification, to determine some slot types were noticed. Our findings demonstrate the model's ability to predict attention with unprecedented precision, offering actionable insights for researchers and practitioners. | es |
| dc.format.extent | 10 p. | es |
| dc.format.mimetype | application/pdf | es |
| dc.language.iso | eng | es |
| dc.publisher | Association for Computing Machinery, Inc | es |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
| dc.subject | SERP | es |
| dc.subject | Búsqueda patrocinada | es |
| dc.subject | Publicidad online | es |
| dc.subject | Seguimiento del cursor del ratón | es |
| dc.subject | Anuncios multiespacio | es |
| dc.subject | Visualizaciones directas | es |
| dc.subject | Atención del usuario | es |
| dc.subject | Redes neuronales | es |
| dc.title | AdSight: Scalable and Accurate Quantification of User Attention in Multi-Slot Sponsored Search | es |
| dc.type | info:eu-repo/semantics/conferenceObject | es |
| dc.rights.holder | © 2025 Copyright held by the owner/author(s). | es |
| dc.identifier.doi | 10.1145/3726302.3729891 | es |
| dc.relation.publisherversion | https://dl.acm.org/doi/pdf/10.1145/3726302.3729891 | es |
| dc.title.event | SIGIR 2025 - Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval | es |
| dc.description.project | European Innovation Council (Pathfinder program): SYMBIOTIK project, grant 101071147 | es |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
| dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional




