Mostrar registro simples

dc.contributor.authorVicente-García, Luis
dc.contributor.authorSantos Martín, Francisco Javier 
dc.contributor.authorMerino Gómez, Elena 
dc.contributor.authorSan Juan Blanco, Manuel 
dc.date.accessioned2025-10-23T18:56:50Z
dc.date.available2025-10-23T18:56:50Z
dc.date.issued2025
dc.identifier.citationVicente-García, L., Santos-Martín, F., Merino-Gómez, E. et al. Neuro-fuzzy optimization of cutting tool geometry in machining using Sugeno and Mamdani inference models. Int J Adv Manuf Technol (2025). https://doi.org/10.1007/s00170-025-16742-xes
dc.identifier.issn0268-3768es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/78984
dc.descriptionProducción Científicaes
dc.description.abstractThis study presents the design and validation of zero-order Sugeno and Mamdani fuzzy inference systems applied to the estimation of optimal cutting tool angles in machining processes. The input variables considered were the tool destruction energy (D) and the material’s specific cutting energy (U), while the output variables corresponded to the clearance angle (αn), rake angle (γn), and cutting-edge inclination angle (λs). Based on a real dataset of 81 experimental values, a synthetic database of 118,300 records was generated using an adaptive neuro-fuzzy inference system (ANFIS) trained via the backpropagation algorithm, achieving a reliability level of 85%. Both models were implemented in MATLAB using Gaussian membership functions with nine rules per output variable. The Sugeno model employed constant outputs, whereas the Mamdani model used linguistic labels. Validation was performed through the calculation of the cutting-edge angle (βn), derived from αn and γn, by comparing the outputs of both systems. The normalized relative root mean square error (rMSE) was found to be below 6.5%, indicating a high level of agreement between the two models. The results demonstrate that fuzzy inference systems—particularly when integrated with neuro-fuzzy architectures like ANFIS—are effective tools for addressing geometric optimization problems in industrial environments characterized by uncertainty and complexity. It is concluded that this approach provides a robust and accurate alternative for computer-aided cutting tool design.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.classificationNeuro-fuzzy systemses
dc.subject.classificationANFISes
dc.subject.classificationTool geometry optimizationes
dc.subject.classificationMachining processes
dc.titleNeuro-fuzzy optimization of cutting tool geometry in machining using Sugeno and Mamdani inference modelses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© The Author(s) 2025es
dc.identifier.doi10.1007/s00170-025-16742-xes
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s00170-025-16742-xes
dc.identifier.publicationtitleThe International Journal of Advanced Manufacturing Technologyes
dc.peerreviewedSIes
dc.description.projectOpen access funding provided by FEDER European Funds and the Junta de Castilla y León under the Research and Innovation Strategy for Smart Specialization (RIS3) of Castilla y León 2021-2027.es
dc.identifier.essn1433-3015es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones
dc.subject.unesco3310.05 Ingeniería de Procesoses


Arquivos deste item

Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples