• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/79105

    Título
    Mathematical properties of Klein–Gordon–Boussinesq systems
    Autor
    Durán Martín, ÁngelAutoridad UVA Orcid
    Esfahani, A.
    Muslu, Gulcin M.
    Año del Documento
    2025
    Editorial
    Springer Nature
    Descripción
    Producción Científica
    Documento Fuente
    Computational and Applied Mathematics, 2025, vol. 44.
    Resumen
    The Klein–Gordon–Boussinesq (KGB) system is proposed in the literature as a model problem to study the validity of approximations in the long wave limit provided by simpler equations such as KdV, nonlinear Schrödinger or Whitham equations. In this paper, the KGB system is analyzed as a mathematical model in three specific points. The first one concerns well-posedness of the initial-value problem with the study of local existence and uniqueness of solution and the conditions under which the local solution is global or blows up at finite time. The second point is focused on traveling wave solutions of the KGB system. The existence of different types of solitary waves is derived from two classical approaches, while from their numerical generation several properties of the solitary wave profiles are studied. In addition, the validity of the KdV approximation is analyzed by computational means and from the corresponding KdV soliton solutions.
    Materias (normalizadas)
    Sistema KGB
    Onda solitaria
    Bien planteado
    ISSN
    2238-3603
    Revisión por pares
    SI
    DOI
    10.1007/s40314-025-03329-1
    Patrocinador
    Nazarbayev University under Faculty Development Competitive Research Grants Program for 2023-2025: 20122022FD4121
    Ministerio de Ciencia e Innovación (MICIN) / Agencia Española de Investigación (AEI): PID2023-147073NB-I00
    Open access funding provided by FEDER European Funds and the Junta de Castilla y León under the Research and Innovation Strategy for Smart Specialization (RIS3) of Castilla y León 2021-2027.
    Version del Editor
    https://link.springer.com/article/10.1007/s40314-025-03329-1
    Propietario de los Derechos
    © 2025 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/79105
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP51 - Artículos de revista [150]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Mathematical properties of Klein–Gordon–Boussinesq.pdf
    Tamaño:
    1.202Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10