Zur Kurzanzeige

dc.contributor.authorDuque Domingo, Jaime 
dc.contributor.authorCaccavale, Riccardo
dc.contributor.authorFinzi, Alberto
dc.contributor.authorZalama Casanova, Eduardo 
dc.contributor.authorGómez García-Bermejo, Jaime 
dc.date.accessioned2025-11-06T07:35:07Z
dc.date.available2025-11-06T07:35:07Z
dc.date.issued2025
dc.identifier.citationJournal of Intelligent Manufacturing, 2025.es
dc.identifier.issn0956-5515es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/79353
dc.descriptionProducción Científicaes
dc.description.abstractWe present a framework that enables a collaborative robot to rapidly replicate structured manipulation tasks demonstrated by a human operator through a single 3D video recording. The system combines object segmentation with hand and gaze tracking to analyze and interpret the video demonstrations. The manipulation task is decomposed into primitive actions that leverage 3D features, including the proximity of the hand trajectory to objects, the speed of the trajectory, and the user’s gaze. In line with the One-Shot Learning paradigm, we introduce a novel object segmentation method called SAM+CP-CVV, ensuring that objects appearing in the demonstration require labeling only once. Segmented manipulation primitives are also associated with object-related data, facilitating the implementation of the corresponding robotic actions. Once these action primitives are extracted and recorded, they can be recombined to generate a structured robotic task ready for execution. This framework is particularly well-suited for flexible manufacturing environments, where operators can rapidly and incrementally instruct collaborative robots through video-demonstrated tasks. We discuss the approach applied to heterogeneous manipulation tasks and show that the proposed method can be transferred to different types of robots and manipulation scenarios.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringer Naturees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAprendizaje únicoes
dc.subjectAprendizaje robóticoes
dc.subjectAprendizaje por demostraciónes
dc.subjectSegmentación de actividadeses
dc.titleOne-shot learning for rapid generation of structured robotic manipulation tasks from 3D video demonstrationses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© The Author(s) 2025es
dc.identifier.doi10.1007/s10845-025-02673-7es
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s10845-025-02673-7es
dc.identifier.publicationtitleJournal of Intelligent Manufacturinges
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia e Innovacion (MCIN) / Agencia Estatal de Investigación (AEI): PID2021-123020OB-I00 (MCIN/AEI/10.13039/501100011033/FEDER, UE)es
dc.description.projectConsejería de Familia of the Junta de Castilla y León: EIAROBes
dc.description.projectEU Horizon INVERSE: 101136067es
dc.description.projectEU Horizon Melody: P2022XALNSes
dc.description.projectEU Horizon euROBIN: 101070596
dc.description.projectMinistero dell'Università e della Ricerca: PE15 ASI/MUR
dc.description.projectOpen access funding provided by FEDER European Funds and the Junta de Castilla y León under the Research and Innovation Strategy for Smart Specialization (RIS3) of Castilla y León 2021-2027.
dc.identifier.essn1572-8145es
dc.rightsAttribution 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco1203 Ciencia de Los Ordenadores
dc.subject.unesco1203.04 Inteligencia Artificial


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige