Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/79353
Título
One-shot learning for rapid generation of structured robotic manipulation tasks from 3D video demonstrations
Autor
Año del Documento
2025
Editorial
Springer Nature
Descripción
Producción Científica
Documento Fuente
Journal of Intelligent Manufacturing, 2025.
Resumen
We present a framework that enables a collaborative robot to rapidly replicate structured manipulation tasks demonstrated by a human operator through a single 3D video recording. The system combines object segmentation with hand and gaze tracking to analyze and interpret the video demonstrations. The manipulation task is decomposed into primitive actions that leverage 3D features, including the proximity of the hand trajectory to objects, the speed of the trajectory, and the user’s gaze. In line with the One-Shot Learning paradigm, we introduce a novel object segmentation method called SAM+CP-CVV, ensuring that objects appearing in the demonstration require labeling only once. Segmented manipulation primitives are also associated with object-related data, facilitating the implementation of the corresponding robotic actions. Once these action primitives are extracted and recorded, they can be recombined to generate a structured robotic task ready for execution. This framework is particularly well-suited for flexible manufacturing environments, where operators can rapidly and incrementally instruct collaborative robots through video-demonstrated tasks. We discuss the approach applied to heterogeneous manipulation tasks and show that the proposed method can be transferred to different types of robots and manipulation scenarios.
Materias (normalizadas)
Aprendizaje único
Aprendizaje robótico
Aprendizaje por demostración
Segmentación de actividades
Materias Unesco
1203 Ciencia de Los Ordenadores
1203.04 Inteligencia Artificial
ISSN
0956-5515
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia e Innovacion (MCIN) / Agencia Estatal de Investigación (AEI): PID2021-123020OB-I00 (MCIN/AEI/10.13039/501100011033/FEDER, UE)
Consejería de Familia of the Junta de Castilla y León: EIAROB
EU Horizon INVERSE: 101136067
EU Horizon Melody: P2022XALNS
EU Horizon euROBIN: 101070596
Ministero dell'Università e della Ricerca: PE15 ASI/MUR
Open access funding provided by FEDER European Funds and the Junta de Castilla y León under the Research and Innovation Strategy for Smart Specialization (RIS3) of Castilla y León 2021-2027.
Consejería de Familia of the Junta de Castilla y León: EIAROB
EU Horizon INVERSE: 101136067
EU Horizon Melody: P2022XALNS
EU Horizon euROBIN: 101070596
Ministero dell'Università e della Ricerca: PE15 ASI/MUR
Open access funding provided by FEDER European Funds and the Junta de Castilla y León under the Research and Innovation Strategy for Smart Specialization (RIS3) of Castilla y León 2021-2027.
Version del Editor
Propietario de los Derechos
© The Author(s) 2025
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
Tamaño:
4.963Mb
Formato:
Adobe PDF
La licencia del ítem se describe como Attribution 4.0 Internacional










