• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/79620

    Título
    State space neural networks and model-decomposition methods for fault diagnosis of complex industrial systems
    Autor
    Pulido, Belarmino
    Zamarreño, Jesús M.
    Merino, Alejandro
    Bregon, Anibal
    Año del Documento
    2019
    Editorial
    Elsevier
    Documento Fuente
    Engineering Applications of Artificial Intelligence, March 2019, Vol. 79, Pages 67-86
    Resumen
    Reliable and timely fault detection and isolation are necessary tasks to guarantee continuous performance in complex industrial systems, avoiding failure propagation in the system and helping to minimize downtime. Model-based diagnosis fulfils those requirements, and has the additional advantage of using reusable models. However, reusing existing complex non-linear models for diagnosis in large industrial systems is not straightforward. Most of the times, the models have been created for other purposes different from diagnosis, and many times the required analytical redundancy is small. The approach proposed in this work combines techniques from two different research communities within Artificial Intelligence: Model-based Reasoning and Neural Networks. In particular, in this work we propose to use Possible Conflicts, which is a model decomposition technique from the Artificial Intelligence community to provide the structure (equations, inputs, outputs, and state variables) of minimal models able to perform fault detection and isolation. Such structural information is then used to design a grey box model by means of state space neural networks. In this work we prove that the structure of the Minimal Evaluable Model for a Possible Conflict can be used in real-world industrial systems to guide the design of the state space model of the neural network, reducing its complexity and avoiding the process of multiple unknown parameter estimation in the first principles models. We demonstrate the feasibility of the approach in an evaporator for a beet sugar factory using real data.
    ISSN
    0952-1976
    Revisión por pares
    SI
    DOI
    10.1016/j.engappai.2018.12.007
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/79620
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP44 - Artículos de revista [79]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Final_paper.pdf
    Tamaño:
    2.255Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10