• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Ingeniería Agrícola y Forestal
    • DEP42 - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Ingeniería Agrícola y Forestal
    • DEP42 - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80151

    Título
    Forecasting Performance Indicators of a Single-Channel Solar Chimney Using Artificial Neural Networks
    Autor
    Torres-Aguilar, Carlos
    Moreno, Pedro
    Rossit, Diego
    Nesmachnow, Sergio
    Aguilar-Castro, Karla M.
    Macias-Melo, Edgar V.
    Hernández-Callejo, Luis
    Año del Documento
    2025-11-27
    Editorial
    Tech Science Press
    Documento Fuente
    Forecasting Performance Indicators of a Single-Channel Solar Chimney Using Artificial Neural Networks. CMES - Computer Modeling in Engineering and Sciences , november, 2025, p. 1-23
    Zusammenfassung
    Solar chimneys are renewable energy systems designed to enhance natural ventilation, improving thermal comfort in buildings. As passive systems, solar chimneys contribute to energy efficiency in a sustainable and environmentally friendly way. The effectiveness of a solar chimney depends on its design and orientation relative to the cardinal directions, both of which are critical for optimal performance. This article presents a supervised learning approach using artificial neural networks to forecast the performance indicators of solar chimneys. The dataset includes information from 2784 solar chimney configurations, which encompasses various factors such as chimney height, channel thickness, glass thickness, paint, wall material, measurement date, and orientation. The case study examines the four cardinal orientations and weather data from Mexico City, covering the period from 01 January to 31 December 2024. The main results indicate that the proposed artificial neural network models achieved higher coefficient of determination values (0.905-0.990) than the baseline method across performance indicators of the solar chimney system, demonstrating greater accuracy and improved generalization. The proposed approach highlights the potential of using artificial neural networks as a decision-making tool in the design stage of solar chimneys in sustainable architecture.
    ISSN
    15261492
    Revisión por pares
    SI
    DOI
    10.32604/cmes.2025.069996
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/80151
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP42 - Artículos de revista [298]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    127 - Forescasting CMES.pdf
    Tamaño:
    11.39Mb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10