Mostrar registro simples

dc.contributor.authorAlvarez, Marcos Lazaro
dc.contributor.authorBahillo Martínez, Alfonso 
dc.contributor.authorArjona, Laura
dc.contributor.authorMarcelo Nogueira, Diogo
dc.contributor.authorFerreira Gomes, Elsa
dc.contributor.authorJorge, Alípio M.
dc.date.accessioned2025-11-28T12:26:42Z
dc.date.available2025-11-28T12:26:42Z
dc.date.issued2025
dc.identifier.citationIEEE Access, 2025, vol. 13, pp. 127240-127251es
dc.identifier.issn2169-3536es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/80154
dc.descriptionProducción Científicaes
dc.description.abstractSound-based uroflowmetry (SU) is a non-invasive technique emerging as an alternative to traditional uroflowmetry (UF) to calculate the voiding flow rate based on the sound generated by the urine impacting the water in a toilet, enabling remote monitoring and reducing the patient burden and clinical costs. This study trains four different machine learning (ML) models (random forest, gradient boosting, support vector machine and convolutional neural network) using both regression and classification approaches to predict and categorize the voiding flow rate from sound events. The models were trained with a dataset that contains sounds from synthetic void events generated with a high precision peristaltic pump and a traditional toilet. Sound was simultaneously recorded with three devices: Ultramic384k, Mi A1 smartphone and Oppo Smartwatch. To extract the audio features, our analysis showed that segmenting the audio signals into 1000 ms segments with frequencies up to 16 kHz provided the best results. Results show that random forest achieved the best performance in both regression and classification tasks, with a mean absolute error (MAE) of 0.9, 0.7 and 0.9 ml/s and quadratic weighted kappa (QWK) of 0.99, 1.0 and 1.0 for the three devices. To evaluate the models in a real environment and assess the effectiveness of training with synthetic data, the best-performing models were retrained and validated using a real voiding sounds dataset. The results reported an MAE below 2.5 ml/s and a QWK above 0.86 for regression and classification tasks, respectively.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherIEEEes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationMachine learninges
dc.subject.classificationnon-invasive voiding monitoringes
dc.subject.classificationsound-based uroflowmetryes
dc.subject.classificationsound voiding signalses
dc.subject.classificationvoiding flow estimationes
dc.titleLeveraging Synthetic Data to Develop a Machine Learning Model for Voiding Flow Rate Prediction From Audio Signalses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1109/ACCESS.2025.3590626es
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/11084787es
dc.identifier.publicationfirstpage127240es
dc.identifier.publicationlastpage127251es
dc.identifier.publicationtitleIEEE Accesses
dc.identifier.publicationvolume13es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia, Innovación y Universidades (MICIU) a través del proyecto SWALU CPP2022-010045es
dc.description.project2020 ‘‘Ayuda para contratos predoctorales’’ financiada por MICIU y la Agencia Estatal de Investigación (AEI), 10.13039/501100011033 y cofinanciada por el Fondo Social Europeo (FSE) bajo el lema ‘‘FSE invierte en tu futuro,’’ proyecto PRE2020-095612es
dc.description.projectGobierno Vasco a través del Hazitek Program bajo el proyecto BATHMIC ZL-2024/00481es
dc.description.projectMinisterio a través del proyecto Aginplace financiado por MICIU, AEI/10.13039/501100011033 y por la Unión Europea (UE) a través del Fondo Europeo de Desarrollo Regional (FEDER), proyecto PID2023-146254OB-C41 y PID2023-146254OA-C44es
dc.identifier.essn2169-3536es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Arquivos deste item

Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples