Mostrar el registro sencillo del ítem

dc.contributor.authorAlvarez, Marcos Lazaro
dc.contributor.authorArjona, Laura
dc.contributor.authorJojoa Acosta, Mario Fernando 
dc.contributor.authorBahillo Martínez, Alfonso 
dc.date.accessioned2025-12-01T09:57:40Z
dc.date.available2025-12-01T09:57:40Z
dc.date.issued2025
dc.identifier.citationScientific Reports, vol. 15, n. 643es
dc.identifier.issn2045-2322es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/80188
dc.descriptionProducción Científicaes
dc.description.abstractSound-based uroflowmetry (SU) offers a non-invasive alternative to traditional uroflowmetry (UF) for evaluating lower urinary tract dysfunctions, enabling home-based testing and reducing the need for clinic visits. This study compares SU and UF in estimating urine flow rate and voided volume in 50 male volunteers (aged 18–60), with UF results from a Minze uroflowmeter as the reference standard. Audio signals recorded during voiding were segmented and machine learning algorithms (gradient boosting, random forest, and support vector machine) estimated flow parameters from three devices: Ultramic384k, Mi A1 smartphone, and Oppo smartwatch. The mean absolute error for flow rate estimation were 2.6, 2.5 and 2.9 ml/s, with R2 values of 84%, 83%, and 79%, respectively. Analysis of the Ultramic384k’s frequency range showed that the 0–8 kHz band contained 83% of significant components, suggesting higher sampling frequencies are unnecessary. A 1000 ms segment size was optimal for balancing computational efficiency and accuracy. Lin’s concordance coefficients for urine flow and voided volume using the smartwatch (0–8 kHz, 1000 ms) were 0.9 and 0.85, respectively, demonstrating that SU is a reliable, cost-effective alternative to UF for estimating key uroflowmetry parameters, with added patient convenience.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringer Naturees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationAcoustic voiding signalses
dc.subject.classificationFlow predictiones
dc.subject.classificationMachine learninges
dc.subject.classificationSound-based uroflowmetryes
dc.titleFlow prediction in sound-based uroflowmetryes
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1038/s41598-024-84978-wes
dc.relation.publisherversionhttps://www.nature.com/articles/s41598-024-84978-w#citeases
dc.identifier.publicationissue1es
dc.identifier.publicationtitleScientific Reportses
dc.identifier.publicationvolume15es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia, Innovación y Universidades (MICIU) a través del proyecto SWALU CPP2022-010045 y ‘Ayuda para contratos predoctorales 2020 (ref. PRE2020-095612)' financiado por MICIU/AEI /10.13039/501100011033 y cofinanciado por FSE invierte en tu futuroes
dc.description.projectMinisterio a través del proyecto Aginplace (ref. PID2023-146254OB-C41 y ref. PID2023-146254OA-C44)es
dc.identifier.essn2045-2322es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem