• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80297

    Título
    Wavelet analysis of oximetry recordings to assist in the automated detection of moderate-to-severe pediatric sleep apnea-hypopnea syndrome
    Autor
    Vaquerizo-Villar, Fernando
    Álvarez, Daniel
    Kheirandish-Gozal, Leila
    Gutiérrez-Tobal, Gonzalo C.
    Barroso-García, Verónica
    Crespo, Andrea
    del Campo, Félix
    Gozal, David
    Hornero, Roberto
    Año del Documento
    2018-12-07
    Editorial
    PLOS
    Descripción
    Producción Científica
    Documento Fuente
    PLoS ONE, Diciembre 2025 vol. 13, n. 12, p. e0208502.
    Resumo
    Background The gold standard for pediatric sleep apnea hypopnea syndrome (SAHS) is overnight polysomnography, which has several limitations. Thus, simplified diagnosis techniques become necessary. Objective The aim of this study is twofold: (i) to analyze the blood oxygen saturation (SpO2) signal from nocturnal oximetry by means of features from the wavelet transform in order to characterize pediatric SAHS; (ii) to evaluate the usefulness of the extracted features to assist in the detection of pediatric SAHS. Methods 981 SpO2 signals from children ranging 2–13 years of age were used. Discrete wavelet transform (DWT) was employed due to its suitability to deal with non-stationary signals as well as the ability to analyze the SAHS-related low frequency components of the SpO2 signal with high resolution. In addition, 3% oxygen desaturation index (ODI3), statistical moments and power spectral density (PSD) features were computed. Fast correlation-based filter was applied to select a feature subset. This subset fed three classifiers (logistic regression, support vector machines (SVM), and multilayer perceptron) trained to determine the presence of moderate-to-severe pediatric SAHS (apnea-hypopnea index cutoff ≥ 5 events per hour). Results The wavelet entropy and features computed in the D9 detail level of the DWT reached significant differences associated with the presence of SAHS. All the proposed classifiers fed with a selected feature subset composed of ODI3, statistical moments, PSD, and DWT features outperformed every single feature. SVM reached the highest performance. It achieved 84.0% accuracy (71.9% sensitivity, 91.1% specificity), outperforming state-of-the-art studies in the detection of moderate-to-severe SAHS using the SpO2 signal alone. Conclusion Wavelet analysis could be a reliable tool to analyze the oximetry signal in order to assist in the automated detection of moderate-to-severe pediatric SAHS. Hence, pediatric subjects suffering from moderate-to-severe SAHS could benefit from an accurate simplified screening test only using the SpO2 signal.
    Materias Unesco
    1203.04 Inteligencia Artificial
    3325 Tecnología de las Telecomunicaciones
    3314 Tecnología Médica
    ISSN
    1932-6203
    Revisión por pares
    SI
    DOI
    10.1371/journal.pone.0208502
    Patrocinador
    This work was supported by 'Agencia Estatal de Investigación del Ministerio de Ciencia, Innovación y Universidades' and ‘European Regional Development Fund (FEDER)’ under projects DPI2017-84280-R, RTC-2015-3446-1, and 0378_AD_EEGWA_2_P, by ‘Consejería de Educación de la Junta de Castilla y León and FEDER’ under project VA037U16, and by ‘European Commission’ and ‘FEDER’ under project ‘Análisis y correlación entre el genoma completo y la actividad cerebral para la ayuda en el diagnóstico de la enfermedad de Alzheimer’ (‘Cooperation Pro- gramme Interreg V-A Spain-Portugal POCTEP 2014–2020’). F. Vaquerizo-Villar was in receipt of a ‘Ayuda para contratos predoctorales para la Formación de Profesorado Universitario (FPU)’ grant from the Ministerio de Educación, Cultura y Deporte (FPU16/02938). V. Barroso-García was in a receipt of a ‘Ayuda para financiar la contratación predoctoral de personal investigador’ grant from the Consejería de Educación de la Junta de Castilla y León and the European Social Fund. D. Álvarez was in receipt of a Juan de la Cierva grant from MINECO (IJCI-2014-22664). L. Kheirandish-Gozal was supported by National Institutes of Health (NIH) grant HL130984 and D. Gozal by NIH grant HL-65270.
    Version del Editor
    https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0208502
    Propietario de los Derechos
    © 2018 Vaquerizo-Villar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/80297
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • GIB - Artículos de revista [43]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    Vaquerizo2018_PlosONE.pdf
    Tamaño:
    1.630Mb
    Formato:
    Adobe PDF
    Descripción:
    Artículo principal
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10