Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80412
Título
Utility of multilayer perceptron neural network classifiers in the diagnosis of the obstructive sleep apnoea syndrome from nocturnal oximetry
Autor
Año del Documento
2008
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Marcos, J.V., Hornero, R., Álvarez, D., Del Campo, F., Zamarrón, C. and López, M., 2008. Utility of multilayer perceptron neural network classifiers in the diagnosis of the obstructive sleep apnoea syndrome from nocturnal oximetry. Computer Methods and Programs in Biomedicine, 92(1), pp.79-89.
Resumen
The aim of this study is to assess the ability of multilayer perceptron (MLP) neural networks as an assistant tool in the diagnosis of the obstructive sleep apnoea syndrome (OSAS). Non-linear features from nocturnal oxygen saturation (SaO2) recordings were used to discriminate between OSAS positive and negative patients. A total of 187 subjects suspected of suffering from OSAS (111 with a positive diagnosis of OSAS and 76 with a negative diagnosis of OSAS) took part in the study. The initial population was divided into training, validation and test sets for deriving and testing our neural network classifier. Three methods were applied to extract non-linear features from SaO2 signals: approximate entropy (ApEn), central tendency measure (CTM) and Lempel-Ziv complexity (LZC). The selected MLP-based classifier provided a diagnostic accuracy of 85.5% (89.8% sensitivity and 79.4% specificity). Our neural network algorithm could represent a useful technique for OSAS detection. It could contribute to reduce the demand for polysomnographic studies in OSAS screening.
ISSN
0169-2607
Revisión por pares
SI
Patrocinador
This research has been supported by Consejería de Educación de la Junta de Castilla y León under project VA108A06.
Propietario de los Derechos
Elsevier
Idioma
spa
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
restrictedAccess
Aparece en las colecciones
Ficheros en el ítem








