Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80444
Título
Machine Learning Representation of Loss of Eye Regularity in a Drosophila Neurodegenerative Model
Autor
Año del Documento
2020
Descripción
Producción Científica
Documento Fuente
Front Neurosci. 2020 Jun 4;14:516
Resumen
The fruit fly compound eye is a premier experimental system for modeling human
neurodegenerative diseases. The disruption of the retinal geometry has been historically
assessed using time-consuming and poorly reliable techniques such as histology or
pseudopupil manual counting. Recent semiautomated quantification approaches rely
either on manual region-of-interest delimitation or engineered features to estimate the
extent of degeneration. This work presents a fully automated classification pipeline
of bright-field images based on orientated gradient descriptors and machine learning
techniques. An initial region-of-interest extraction is performed, applying morphological
kernels and Euclidean distance-to-centroid thresholding. Image classification algorithms
are trained on these regions (support vector machine, decision trees, random forest,
and convolutional neural network), and their performance is evaluated on independent,
unseen datasets. The combinations of oriented gradient C gaussian kernel Support
Vector Machine [0.97 accuracy and 0.98 area under the curve (AUC)] and fine-tuned
pre-trained convolutional neural network (0.98 accuracy and 0.99 AUC) yielded the best
results overall. The proposed method provides a robust quantification framework that
can be generalized to address the loss of regularity in biological patterns similar to the
Drosophila eye surface and speeds up the processing of large sample batches.
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia e Innovación (MICINN), grants BFU2011-23978 and BFU2015-68149-R
Idioma
spa
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional










