Mostrar el registro sencillo del ítem

dc.contributor.authorMarcos Martín, José Víctor
dc.contributor.authorHornero Sánchez, Roberto 
dc.contributor.authorÁlvarez González, Daniel 
dc.contributor.authorCampo Matias, Félix del 
dc.contributor.authorLópez-Coronado Sánchez-Fortún, Miguel 
dc.contributor.authorZamarrón, Carlos
dc.date.accessioned2025-12-10T16:05:28Z
dc.date.available2025-12-10T16:05:28Z
dc.date.issued2008
dc.identifier.citationMarcos, J.V., Hornero, R., Álvarez, D., Del Campo, F., Zamarrón, C. and López, M., 2008. Utility of multilayer perceptron neural network classifiers in the diagnosis of the obstructive sleep apnoea syndrome from nocturnal oximetry. Computer Methods and Programs in Biomedicine, 92(1), pp.79-89.es
dc.identifier.issn0169-2607es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/80460
dc.descriptionProducción Científicaes
dc.description.abstractThe aim of this study is to assess the ability of multilayer perceptron (MLP) neural networks as an assistant tool in the diagnosis of the obstructive sleep apnoea syndrome (OSAS). Non-linear features from nocturnal oxygen saturation (SaO2) recordings were used to discriminate between OSAS positive and negative patients. A total of 187 subjects suspected of suffering from OSAS (111 with a positive diagnosis of OSAS and 76 with a negative diagnosis of OSAS) took part in the study. The initial population was divided into training, validation and test sets for deriving and testing our neural network classifier. Three methods were applied to extract non-linear features from SaO2 signals: approximate entropy (ApEn), central tendency measure (CTM) and Lempel-Ziv complexity (LZC). The selected MLP-based classifier provided a diagnostic accuracy of 85.5% (89.8% sensitivity and 79.4% specificity). Our neural network algorithm could represent a useful technique for OSAS detection. It could contribute to reduce the demand for polysomnographic studies in OSAS screening.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.titleUtility of multilayer perceptron neural network classifiers in the diagnosis of the obstructive sleep apnoea syndrome from nocturnal oximetryes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderElsevieres
dc.identifier.doi10.1016/j.cmpb.2008.05.006es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0169260708001302es
dc.identifier.publicationfirstpage79es
dc.identifier.publicationissue1es
dc.identifier.publicationlastpage89es
dc.identifier.publicationtitleComputer Methods and Programs in Biomedicinees
dc.identifier.publicationvolume92es
dc.peerreviewedSIes
dc.description.projectThis research has been supported by Consejería de Educación de la Junta de Castilla y León under project VA108A06.es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem