Mostrar el registro sencillo del ítem

dc.contributor.authorMarcos Martín, José Víctor
dc.contributor.authorHornero Sánchez, Roberto 
dc.contributor.authorÁlvarez González, Daniel 
dc.contributor.authorCampo Matias, Félix del 
dc.contributor.authorZamarrón, Carlos
dc.date.accessioned2025-12-10T16:12:34Z
dc.date.available2025-12-10T16:12:34Z
dc.date.issued2009
dc.identifier.citationMarcos, J.V., Hornero, R., Alvarez, D., del Campo, F. and Zamarron, C., 2009. Assessment of four statistical pattern recognition techniques to assist in obstructive sleep apnoea diagnosis from nocturnal oximetry. Medical Engineering & Physics, 31(8), pp.971-978.es
dc.identifier.issn1350-4533es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/80463
dc.descriptionProducción Científicaes
dc.description.abstractThe aim of this study is to assess the capability of traditional statistical pattern recognition techniques to help in obstructive sleep apnoea (OSA) diagnosis. Classifiers based on quadratic (QDA) and linear (LDA) discriminant analysis, K-nearest neighbours (KNN) and logistic regression (LR) were evaluated. Spectral and nonlinear features from oxygen saturation (SaO2) signals were used as inputs. A total of 187 recordings from patients suspected of suffering from OSA were available. This initial dataset was divided into training and test sets with 74 and 113 signals, respectively. Several classification algorithms were developed by applying QDA, LDA, KNN and LR with spectral features, nonlinear features and combination of both groups. The performance of each algorithm was measured on the test set by means of classification accuracy and receiver operating characteristic (ROC) analysis. QDA, LDA and LR showed better classification capability than KNN. The classifier based on LDA with spectral features provided the best diagnostic ability with an accuracy of 87.61% (91.05% sensitivity and 82.61% specificity) and an area under the ROC curve (AROC) of 0.925. Statistical pattern recognition techniques evaluated in our study could be applied as an OSA screening tool and could contribute to reduce the number of polisomnographies.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.titleAssessment of four statistical pattern recognition techniques to assist in obstructive sleep apnoea diagnosis from nocturnal oximetryes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderElsevieres
dc.identifier.doi10.1016/j.medengphy.2009.05.010es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1350453309001246es
dc.identifier.publicationfirstpage971es
dc.identifier.publicationissue8es
dc.identifier.publicationlastpage978es
dc.identifier.publicationtitleMedical Engineering & Physicses
dc.identifier.publicationvolume31es
dc.peerreviewedSIes
dc.description.projectThis research has been supported by Ministerio de Ciencia e Innovación and Consejería de Sanidad de la Junta de Castilla y León under projects TEC2008-02241 and SAN673/VA03/08, respectively.es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem