• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80463

    Título
    Assessment of four statistical pattern recognition techniques to assist in obstructive sleep apnoea diagnosis from nocturnal oximetry
    Autor
    Marcos Martín, José Víctor
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Álvarez González, DanielAutoridad UVA Orcid
    Campo Matias, Félix delAutoridad UVA Orcid
    Zamarrón, Carlos
    Año del Documento
    2009
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Marcos, J.V., Hornero, R., Alvarez, D., del Campo, F. and Zamarron, C., 2009. Assessment of four statistical pattern recognition techniques to assist in obstructive sleep apnoea diagnosis from nocturnal oximetry. Medical Engineering & Physics, 31(8), pp.971-978.
    Resumen
    The aim of this study is to assess the capability of traditional statistical pattern recognition techniques to help in obstructive sleep apnoea (OSA) diagnosis. Classifiers based on quadratic (QDA) and linear (LDA) discriminant analysis, K-nearest neighbours (KNN) and logistic regression (LR) were evaluated. Spectral and nonlinear features from oxygen saturation (SaO2) signals were used as inputs. A total of 187 recordings from patients suspected of suffering from OSA were available. This initial dataset was divided into training and test sets with 74 and 113 signals, respectively. Several classification algorithms were developed by applying QDA, LDA, KNN and LR with spectral features, nonlinear features and combination of both groups. The performance of each algorithm was measured on the test set by means of classification accuracy and receiver operating characteristic (ROC) analysis. QDA, LDA and LR showed better classification capability than KNN. The classifier based on LDA with spectral features provided the best diagnostic ability with an accuracy of 87.61% (91.05% sensitivity and 82.61% specificity) and an area under the ROC curve (AROC) of 0.925. Statistical pattern recognition techniques evaluated in our study could be applied as an OSA screening tool and could contribute to reduce the number of polisomnographies.
    ISSN
    1350-4533
    Revisión por pares
    SI
    DOI
    10.1016/j.medengphy.2009.05.010
    Patrocinador
    This research has been supported by Ministerio de Ciencia e Innovación and Consejería de Sanidad de la Junta de Castilla y León under projects TEC2008-02241 and SAN673/VA03/08, respectively.
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S1350453309001246
    Propietario de los Derechos
    Elsevier
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/80463
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP41 - Artículos de revista [121]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    marcos_mep_2009_accepted.pdf
    Tamaño:
    367.4Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10