Mostrar el registro sencillo del ítem

dc.contributor.authorMarcos Martín, José Víctor
dc.contributor.authorHornero Sánchez, Roberto 
dc.contributor.authorÁlvarez González, Daniel 
dc.contributor.authorCampo Matias, Félix del 
dc.contributor.authorAboy, M.
dc.date.accessioned2025-12-10T16:20:58Z
dc.date.available2025-12-10T16:20:58Z
dc.date.issued2010
dc.identifier.citationMarcos, J.V., Hornero, R., Álvarez, D. et al. Automated detection of obstructive sleep apnoea syndrome from oxygen saturation recordings using linear discriminant analysis. Med Biol Eng Comput 48, 895–902 (2010)es
dc.identifier.issn0140-0118es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/80466
dc.descriptionProducción Científicaes
dc.description.abstractNocturnal polysomnography (PSG) is the gold-standard to diagnose obstructive sleep apnoea syndrome (OSAS). However, it is complex, expensive, and time-consuming. We present an automatic OSAS detection algorithm based on classification of nocturnal oxygen saturation (SaO2) recordings. The algorithm makes use of spectral and nonlinear analysis for feature extraction, principal component analysis (PCA) for preprocessing and linear discriminant analysis (LDA) for classification. We conducted a study to characterize and prospectively validate our OSAS detection algorithm. The population under study was composed of subjects suspected of suffering from OSAS. A total of 214 SaO2 signals were available. These signals were randomly divided into a training set (85 signals) and a test set (129 signals) to prospectively validate the proposed method. The OSAS detection algorithm achieved a diagnostic accuracy of 93.02% (97.00% sensitivity and 79.31% specificity) on the test set. It outperformed other alternative implementations that either use spectral and nonlinear features separately or are based on logistic regression. The proposed method could be a useful tool to assist in early OSAS diagnosis, contributing to overcome the difficulties of conventional PSG.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.titleAutomated detection of obstructive sleep apnoea syndrome from oxygen saturation recordings using linear discriminant analysises
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderSpringeres
dc.identifier.doi10.1007/s11517-010-0646-6es
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s11517-010-0646-6es
dc.identifier.publicationfirstpage895es
dc.identifier.publicationissue9es
dc.identifier.publicationlastpage902es
dc.identifier.publicationtitleMedical & Biological Engineering & Computinges
dc.identifier.publicationvolume48es
dc.peerreviewedSIes
dc.identifier.essn1741-0444es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem