• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80466

    Título
    Automated detection of obstructive sleep apnoea syndrome from oxygen saturation recordings using linear discriminant analysis
    Autor
    Marcos Martín, José Víctor
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Álvarez González, DanielAutoridad UVA Orcid
    Campo Matias, Félix delAutoridad UVA Orcid
    Aboy, M.
    Año del Documento
    2010
    Editorial
    Springer
    Descripción
    Producción Científica
    Documento Fuente
    Marcos, J.V., Hornero, R., Álvarez, D. et al. Automated detection of obstructive sleep apnoea syndrome from oxygen saturation recordings using linear discriminant analysis. Med Biol Eng Comput 48, 895–902 (2010)
    Resumen
    Nocturnal polysomnography (PSG) is the gold-standard to diagnose obstructive sleep apnoea syndrome (OSAS). However, it is complex, expensive, and time-consuming. We present an automatic OSAS detection algorithm based on classification of nocturnal oxygen saturation (SaO2) recordings. The algorithm makes use of spectral and nonlinear analysis for feature extraction, principal component analysis (PCA) for preprocessing and linear discriminant analysis (LDA) for classification. We conducted a study to characterize and prospectively validate our OSAS detection algorithm. The population under study was composed of subjects suspected of suffering from OSAS. A total of 214 SaO2 signals were available. These signals were randomly divided into a training set (85 signals) and a test set (129 signals) to prospectively validate the proposed method. The OSAS detection algorithm achieved a diagnostic accuracy of 93.02% (97.00% sensitivity and 79.31% specificity) on the test set. It outperformed other alternative implementations that either use spectral and nonlinear features separately or are based on logistic regression. The proposed method could be a useful tool to assist in early OSAS diagnosis, contributing to overcome the difficulties of conventional PSG.
    ISSN
    0140-0118
    Revisión por pares
    SI
    DOI
    10.1007/s11517-010-0646-6
    Version del Editor
    https://link.springer.com/article/10.1007/s11517-010-0646-6
    Propietario de los Derechos
    Springer
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/80466
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP41 - Artículos de revista [121]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    marcos_mbec_2010_accepted.pdf
    Tamaño:
    346.0Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10