Mostrar el registro sencillo del ítem

dc.contributor.authorMarcos Martín, José Víctor
dc.contributor.authorHornero Sánchez, Roberto 
dc.contributor.authorÁlvarez González, Daniel 
dc.contributor.authorNabney, Ian T.
dc.contributor.authorCampo Matias, Félix del 
dc.contributor.authorZamarrón, Carlos
dc.date.accessioned2025-12-10T16:26:38Z
dc.date.available2025-12-10T16:26:38Z
dc.date.issued2010
dc.identifier.citationMarcos, J.V., Hornero, R., Alvarez, D., Nabney, I.T., Del Campo, F. and Zamarrón, C., 2010. The classification of oximetry signals using Bayesian neural networks to assist in the detection of obstructive sleep apnoea syndrome. Physiological Measurement, 31(3), p.375.es
dc.identifier.issn0967-3334es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/80468
dc.descriptionProducción Científicaes
dc.description.abstractIn the present study, multilayer perceptron (MLP) neural networks were applied to help in the diagnosis of obstructive sleep apnoea syndrome (OSAS). Oxygen saturation (SaO2) recordings from nocturnal pulse oxymetry were used for this purpose. We performed time and spectral analysis of these signals to extract 14 features related to OSAS. The performance of two different MLP classifiers was compared: maximum likelihood (ML) and Bayesian (BY) MLP networks. A total of 187 subjects suspected of suffering from OSAS took part in the study. Their SaO2 signals were divided into a training set with 74 recordings and a test set with 113 recordings. BY-MLP networks achieved the best performance on the test set with 85.58% accuracy (87.76% sensitivity and 82.39% specificity). These results were substantially better than those provided by ML-MLP networks, which were affected by overfitting and achieved an accuracy of 76.81% (86.42% sensitivity and 62.83% specificity). Our results suggest that the Bayesian framework is preferred to implement our MLP classifiers. The proposed BY-MLP networks could be used for early OSAS detection. They could contribute to overcome the difficulties of nocturnal polysomnography (PSG) and thus reduce the demand for these studies.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherIOPsciencees
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.titleThe classification of oximetry signals using Bayesian neural networks to assist in the detection of obstructive sleep apnoea syndromees
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderIOPsciencees
dc.identifier.doi10.1088/0967-3334/31/3/007es
dc.relation.publisherversionhttps://iopscience.iop.org/article/10.1088/0967-3334/31/3/007es
dc.identifier.publicationfirstpage375es
dc.identifier.publicationissue3es
dc.identifier.publicationlastpage394es
dc.identifier.publicationtitlePhysiological Measurementes
dc.identifier.publicationvolume31es
dc.peerreviewedSIes
dc.description.projectThis work has been partially supported by Ministerio de Ciencia e Innovación and FEDER under project TEC2008-02241, and by Consejería de Sanidad de la Junta de Castilla y León under project GRS 337/A/09.es
dc.identifier.essn1361-6579es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem