• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80468

    Título
    The classification of oximetry signals using Bayesian neural networks to assist in the detection of obstructive sleep apnoea syndrome
    Autor
    Marcos Martín, José Víctor
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Álvarez González, DanielAutoridad UVA Orcid
    Nabney, Ian T.
    Campo Matias, Félix delAutoridad UVA Orcid
    Zamarrón, Carlos
    Año del Documento
    2010
    Editorial
    IOPscience
    Descripción
    Producción Científica
    Documento Fuente
    Marcos, J.V., Hornero, R., Alvarez, D., Nabney, I.T., Del Campo, F. and Zamarrón, C., 2010. The classification of oximetry signals using Bayesian neural networks to assist in the detection of obstructive sleep apnoea syndrome. Physiological Measurement, 31(3), p.375.
    Resumen
    In the present study, multilayer perceptron (MLP) neural networks were applied to help in the diagnosis of obstructive sleep apnoea syndrome (OSAS). Oxygen saturation (SaO2) recordings from nocturnal pulse oxymetry were used for this purpose. We performed time and spectral analysis of these signals to extract 14 features related to OSAS. The performance of two different MLP classifiers was compared: maximum likelihood (ML) and Bayesian (BY) MLP networks. A total of 187 subjects suspected of suffering from OSAS took part in the study. Their SaO2 signals were divided into a training set with 74 recordings and a test set with 113 recordings. BY-MLP networks achieved the best performance on the test set with 85.58% accuracy (87.76% sensitivity and 82.39% specificity). These results were substantially better than those provided by ML-MLP networks, which were affected by overfitting and achieved an accuracy of 76.81% (86.42% sensitivity and 62.83% specificity). Our results suggest that the Bayesian framework is preferred to implement our MLP classifiers. The proposed BY-MLP networks could be used for early OSAS detection. They could contribute to overcome the difficulties of nocturnal polysomnography (PSG) and thus reduce the demand for these studies.
    ISSN
    0967-3334
    Revisión por pares
    SI
    DOI
    10.1088/0967-3334/31/3/007
    Patrocinador
    This work has been partially supported by Ministerio de Ciencia e Innovación and FEDER under project TEC2008-02241, and by Consejería de Sanidad de la Junta de Castilla y León under project GRS 337/A/09.
    Version del Editor
    https://iopscience.iop.org/article/10.1088/0967-3334/31/3/007
    Propietario de los Derechos
    IOPscience
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/80468
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP41 - Artículos de revista [121]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    marcos_physiolmeas_2010_accepted.pdf
    Tamaño:
    659.4Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10