Mostrar el registro sencillo del ítem

dc.contributor.authorMarcos Martín, José Víctor
dc.contributor.authorNava, Rodrigo
dc.contributor.authorCristóbal, Gabriel
dc.contributor.authorRedondo, Rafael
dc.contributor.authorEscalante Ramírez, Boris
dc.contributor.authorBueno, Gloria
dc.contributor.authorDéniz, Óscar
dc.contributor.authorGonzález Porto, Amelia
dc.contributor.authorPardo, Cristina
dc.contributor.authorChung, François
dc.contributor.authorRodríguez, Tomás
dc.date.accessioned2025-12-10T16:55:44Z
dc.date.available2025-12-10T16:55:44Z
dc.date.issued2015
dc.identifier.citationMarcos, J.V., Nava, R., Cristóbal, G., Redondo, R., Escalante-Ramírez, B., Bueno, G., Déniz, Ó., González-Porto, A., Pardo, C., Chung, F. and Rodríguez, T., 2015. Automated pollen identification using microscopic imaging and texture analysis. Micron, 68, pp.36-46es
dc.identifier.issn0968-4328es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/80471
dc.descriptionProducción Científicaes
dc.description.abstractPollen identification is required in different scenarios such as prevention of allergic reactions, climate analysis or apiculture. However, it is a time-consuming task since experts are required to recognize each pollen grain through the microscope. In this study, we performed an exhaustive assessment on the utility of texture analysis for automated characterisation of pollen samples. A database composed of 1800 brightfield microscopy images of pollen grains from 15 different taxa was used for this purpose. A pattern recognition-based methodology was adopted to perform pollen classification. Four different methods were evaluated for texture feature extraction from the pollen image: Haralick's gray-level co-occurrence matrices (GLCM), log-Gabor filters (LGF), local binary patterns (LBP) and discrete Tchebichef moments (DTM). Fisher's discriminant analysis and k-nearest neighbour were subsequently applied to perform dimensionality reduction and multivariate classification, respectively. Our results reveal that LGF and DTM, which are based on the spectral properties of the image, outperformed GLCM and LBP in the proposed classification problem. Furthermore, we found that the combination of all the texture features resulted in the highest performance, yielding an accuracy of 95%. Therefore, thorough texture characterisation could be considered in further implementations of automatic pollen recognition systems based on image processing techniques.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.titleAutomated pollen identification using microscopic imaging and texture analysises
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderElsevieres
dc.identifier.doi10.1016/j.micron.2014.09.002es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S096843281400167Xes
dc.identifier.publicationfirstpage36es
dc.identifier.publicationlastpage46es
dc.identifier.publicationtitleMicrones
dc.identifier.publicationvolume68es
dc.peerreviewedSIes
dc.description.projectThis work has been partially supported by the EU-funded \Apifresh" 640 Project coordinated by \Inspiralia" (http://www.apifresh.eu). J. V. Marcos 641 is a research fellow at Institute of Optics (CSIC) under the programme Juan 642 de la Cierva (Spanish Ministry of Economy and Competitiveness). R. Nava 643 thanks Consejo Nacional de Ciencia y Tecnologa (CONACYT) and PAPIIT 644 grant IG100814.es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem