• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80471

    Título
    Automated pollen identification using microscopic imaging and texture analysis
    Autor
    Marcos Martín, José Víctor
    Nava, Rodrigo
    Cristóbal, Gabriel
    Redondo, Rafael
    Escalante Ramírez, Boris
    Bueno, Gloria
    Déniz, Óscar
    González Porto, Amelia
    Pardo, Cristina
    Chung, François
    Rodríguez, Tomás
    Año del Documento
    2015
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Marcos, J.V., Nava, R., Cristóbal, G., Redondo, R., Escalante-Ramírez, B., Bueno, G., Déniz, Ó., González-Porto, A., Pardo, C., Chung, F. and Rodríguez, T., 2015. Automated pollen identification using microscopic imaging and texture analysis. Micron, 68, pp.36-46
    Resumen
    Pollen identification is required in different scenarios such as prevention of allergic reactions, climate analysis or apiculture. However, it is a time-consuming task since experts are required to recognize each pollen grain through the microscope. In this study, we performed an exhaustive assessment on the utility of texture analysis for automated characterisation of pollen samples. A database composed of 1800 brightfield microscopy images of pollen grains from 15 different taxa was used for this purpose. A pattern recognition-based methodology was adopted to perform pollen classification. Four different methods were evaluated for texture feature extraction from the pollen image: Haralick's gray-level co-occurrence matrices (GLCM), log-Gabor filters (LGF), local binary patterns (LBP) and discrete Tchebichef moments (DTM). Fisher's discriminant analysis and k-nearest neighbour were subsequently applied to perform dimensionality reduction and multivariate classification, respectively. Our results reveal that LGF and DTM, which are based on the spectral properties of the image, outperformed GLCM and LBP in the proposed classification problem. Furthermore, we found that the combination of all the texture features resulted in the highest performance, yielding an accuracy of 95%. Therefore, thorough texture characterisation could be considered in further implementations of automatic pollen recognition systems based on image processing techniques.
    ISSN
    0968-4328
    Revisión por pares
    SI
    DOI
    10.1016/j.micron.2014.09.002
    Patrocinador
    This work has been partially supported by the EU-funded \Apifresh" 640 Project coordinated by \Inspiralia" (http://www.apifresh.eu). J. V. Marcos 641 is a research fellow at Institute of Optics (CSIC) under the programme Juan 642 de la Cierva (Spanish Ministry of Economy and Competitiveness). R. Nava 643 thanks Consejo Nacional de Ciencia y Tecnologa (CONACYT) and PAPIIT 644 grant IG100814.
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S096843281400167X
    Propietario de los Derechos
    Elsevier
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/80471
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP41 - Artículos de revista [121]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    marcos_micron_2015_accepted.pdf
    Tamaño:
    3.006Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10